Yiting Liu, Lan Luo, Zhi Ma, Chao Du, Y. Fei, Hong Wang, Q. Duan, Jing Yang
{"title":"容错通用量子计算中的状态升华与成本分析","authors":"Yiting Liu, Lan Luo, Zhi Ma, Chao Du, Y. Fei, Hong Wang, Q. Duan, Jing Yang","doi":"10.1088/2058-9565/ace6ca","DOIUrl":null,"url":null,"abstract":"Magic states have been widely studied in recent years as resource states that help quantum computers achieve fault-tolerant universal quantum computing. The fault-tolerant quantum computing requires fault-tolerant implementation of a set of universal logical gates. Stabilizer code, as a commonly used error correcting code with good properties, can apply the Clifford gates transversally which is fault tolerant. But only Clifford gates cannot realize universal computation. Magic states are introduced to construct non-Clifford gates that combine with Clifford operations to achieve universal quantum computing. Since the preparation of quantum states is inevitably accompanied by noise, preparing the magic state with high fidelity and low overhead is the crucial problem to realizing universal quantum computation. In this paper, we survey the related literature in the past 20 years and introduce the common types of magic states, the protocols to obtain high-fidelity magic states, and overhead analysis for these protocols. Finally, we discuss the future directions of this field.","PeriodicalId":20821,"journal":{"name":"Quantum Science and Technology","volume":"50 1","pages":""},"PeriodicalIF":5.6000,"publicationDate":"2023-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Magic state distillation and cost analysis in fault-tolerant universal quantum computation\",\"authors\":\"Yiting Liu, Lan Luo, Zhi Ma, Chao Du, Y. Fei, Hong Wang, Q. Duan, Jing Yang\",\"doi\":\"10.1088/2058-9565/ace6ca\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Magic states have been widely studied in recent years as resource states that help quantum computers achieve fault-tolerant universal quantum computing. The fault-tolerant quantum computing requires fault-tolerant implementation of a set of universal logical gates. Stabilizer code, as a commonly used error correcting code with good properties, can apply the Clifford gates transversally which is fault tolerant. But only Clifford gates cannot realize universal computation. Magic states are introduced to construct non-Clifford gates that combine with Clifford operations to achieve universal quantum computing. Since the preparation of quantum states is inevitably accompanied by noise, preparing the magic state with high fidelity and low overhead is the crucial problem to realizing universal quantum computation. In this paper, we survey the related literature in the past 20 years and introduce the common types of magic states, the protocols to obtain high-fidelity magic states, and overhead analysis for these protocols. Finally, we discuss the future directions of this field.\",\"PeriodicalId\":20821,\"journal\":{\"name\":\"Quantum Science and Technology\",\"volume\":\"50 1\",\"pages\":\"\"},\"PeriodicalIF\":5.6000,\"publicationDate\":\"2023-07-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Quantum Science and Technology\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1088/2058-9565/ace6ca\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quantum Science and Technology","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/2058-9565/ace6ca","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
Magic state distillation and cost analysis in fault-tolerant universal quantum computation
Magic states have been widely studied in recent years as resource states that help quantum computers achieve fault-tolerant universal quantum computing. The fault-tolerant quantum computing requires fault-tolerant implementation of a set of universal logical gates. Stabilizer code, as a commonly used error correcting code with good properties, can apply the Clifford gates transversally which is fault tolerant. But only Clifford gates cannot realize universal computation. Magic states are introduced to construct non-Clifford gates that combine with Clifford operations to achieve universal quantum computing. Since the preparation of quantum states is inevitably accompanied by noise, preparing the magic state with high fidelity and low overhead is the crucial problem to realizing universal quantum computation. In this paper, we survey the related literature in the past 20 years and introduce the common types of magic states, the protocols to obtain high-fidelity magic states, and overhead analysis for these protocols. Finally, we discuss the future directions of this field.
期刊介绍:
Driven by advances in technology and experimental capability, the last decade has seen the emergence of quantum technology: a new praxis for controlling the quantum world. It is now possible to engineer complex, multi-component systems that merge the once distinct fields of quantum optics and condensed matter physics.
Quantum Science and Technology is a new multidisciplinary, electronic-only journal, devoted to publishing research of the highest quality and impact covering theoretical and experimental advances in the fundamental science and application of all quantum-enabled technologies.