V. Reddi, Benjamin C. Lee, Trishul M. Chilimbi, Kushagra Vaid
{"title":"移动处理器的节能网络搜索","authors":"V. Reddi, Benjamin C. Lee, Trishul M. Chilimbi, Kushagra Vaid","doi":"10.1145/2003690.2003693","DOIUrl":null,"url":null,"abstract":"As cloud and utility computing spreads, computer architects must ensure continued capability growth for the data centers that comprise the cloud. Given megawatt scale power budgets, increasing data center capability requires increasing computing hardware energy efficiency. To increase the data center's capability for work, the work done per Joule must increase. We pursue this efficiency even as the nature of data center applications evolves. Unlike traditional enterprise workloads, which are typically memory or I/O bound, big data computation and analytics exhibit greater compute intensity. This article examines the efficiency of mobile processors as a means for data center capability. In particular, we compare and contrast the performance and efficiency of the Microsoft Bing search engine executing on the mobile-class Atom processor and the server-class Xeon processor. Bing implements statistical machine learning to dynamically rank pages, producing sophisticated search results but also increasing computational intensity. While mobile processors are energy-efficient, they exact a price for that efficiency. The Atom is 5× more energy-efficient than the Xeon when comparing queries per Joule. However, search queries on Atom encounter higher latencies, different page results, and diminished robustness for complex queries. Despite these challenges, quality-of-service is maintained for most, common queries. Moreover, as different computational phases of the search engine encounter different bottlenecks, we describe implications for future architectural enhancements, application tuning, and system architectures. After optimizing the Atom server platform, a large share of power and cost go toward processor capability. With optimized Atoms, more servers can fit in a given data center power budget. For a data center with 15MW critical load, Atom-based servers increase capability by 3.2× for Bing.","PeriodicalId":50918,"journal":{"name":"ACM Transactions on Computer Systems","volume":"8 1","pages":"9:1-9:39"},"PeriodicalIF":2.0000,"publicationDate":"2011-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"19","resultStr":"{\"title\":\"Mobile processors for energy-efficient web search\",\"authors\":\"V. Reddi, Benjamin C. Lee, Trishul M. Chilimbi, Kushagra Vaid\",\"doi\":\"10.1145/2003690.2003693\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"As cloud and utility computing spreads, computer architects must ensure continued capability growth for the data centers that comprise the cloud. Given megawatt scale power budgets, increasing data center capability requires increasing computing hardware energy efficiency. To increase the data center's capability for work, the work done per Joule must increase. We pursue this efficiency even as the nature of data center applications evolves. Unlike traditional enterprise workloads, which are typically memory or I/O bound, big data computation and analytics exhibit greater compute intensity. This article examines the efficiency of mobile processors as a means for data center capability. In particular, we compare and contrast the performance and efficiency of the Microsoft Bing search engine executing on the mobile-class Atom processor and the server-class Xeon processor. Bing implements statistical machine learning to dynamically rank pages, producing sophisticated search results but also increasing computational intensity. While mobile processors are energy-efficient, they exact a price for that efficiency. The Atom is 5× more energy-efficient than the Xeon when comparing queries per Joule. However, search queries on Atom encounter higher latencies, different page results, and diminished robustness for complex queries. Despite these challenges, quality-of-service is maintained for most, common queries. Moreover, as different computational phases of the search engine encounter different bottlenecks, we describe implications for future architectural enhancements, application tuning, and system architectures. After optimizing the Atom server platform, a large share of power and cost go toward processor capability. With optimized Atoms, more servers can fit in a given data center power budget. For a data center with 15MW critical load, Atom-based servers increase capability by 3.2× for Bing.\",\"PeriodicalId\":50918,\"journal\":{\"name\":\"ACM Transactions on Computer Systems\",\"volume\":\"8 1\",\"pages\":\"9:1-9:39\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2011-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"19\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Transactions on Computer Systems\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1145/2003690.2003693\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Computer Systems","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1145/2003690.2003693","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
As cloud and utility computing spreads, computer architects must ensure continued capability growth for the data centers that comprise the cloud. Given megawatt scale power budgets, increasing data center capability requires increasing computing hardware energy efficiency. To increase the data center's capability for work, the work done per Joule must increase. We pursue this efficiency even as the nature of data center applications evolves. Unlike traditional enterprise workloads, which are typically memory or I/O bound, big data computation and analytics exhibit greater compute intensity. This article examines the efficiency of mobile processors as a means for data center capability. In particular, we compare and contrast the performance and efficiency of the Microsoft Bing search engine executing on the mobile-class Atom processor and the server-class Xeon processor. Bing implements statistical machine learning to dynamically rank pages, producing sophisticated search results but also increasing computational intensity. While mobile processors are energy-efficient, they exact a price for that efficiency. The Atom is 5× more energy-efficient than the Xeon when comparing queries per Joule. However, search queries on Atom encounter higher latencies, different page results, and diminished robustness for complex queries. Despite these challenges, quality-of-service is maintained for most, common queries. Moreover, as different computational phases of the search engine encounter different bottlenecks, we describe implications for future architectural enhancements, application tuning, and system architectures. After optimizing the Atom server platform, a large share of power and cost go toward processor capability. With optimized Atoms, more servers can fit in a given data center power budget. For a data center with 15MW critical load, Atom-based servers increase capability by 3.2× for Bing.
期刊介绍:
ACM Transactions on Computer Systems (TOCS) presents research and development results on the design, implementation, analysis, evaluation, and use of computer systems and systems software. The term "computer systems" is interpreted broadly and includes operating systems, systems architecture and hardware, distributed systems, optimizing compilers, and the interaction between systems and computer networks. Articles appearing in TOCS will tend either to present new techniques and concepts, or to report on experiences and experiments with actual systems. Insights useful to system designers, builders, and users will be emphasized.
TOCS publishes research and technical papers, both short and long. It includes technical correspondence to permit commentary on technical topics and on previously published papers.