{"title":"死亡率预测的贝叶斯模型比较","authors":"Jackie S. T. Wong, J. Forster, Peter W. F. Smith","doi":"10.1093/jrsssc/qlad021","DOIUrl":null,"url":null,"abstract":"\n Stochastic models are appealing for mortality forecasting in their ability to generate intervals that quantify uncertainties underlying the forecasts. We present a fully Bayesian implementation of the age-period-cohort-improvement (APCI) model with overdispersion, which is compared with the Lee–Carter model with cohorts. We show that naive prior specification can yield misleading inferences, where we propose Laplace prior as an elegant solution. We also perform model averaging to incorporate model uncertainty. Our findings indicate that the APCI model offers better fit and forecast for England and Wales data spanning 1961–2002. Our approach also allows coherent inclusion of multiple sources of uncertainty, producing well-calibrated probabilistic intervals.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Bayesian model comparison for mortality forecasting\",\"authors\":\"Jackie S. T. Wong, J. Forster, Peter W. F. Smith\",\"doi\":\"10.1093/jrsssc/qlad021\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Stochastic models are appealing for mortality forecasting in their ability to generate intervals that quantify uncertainties underlying the forecasts. We present a fully Bayesian implementation of the age-period-cohort-improvement (APCI) model with overdispersion, which is compared with the Lee–Carter model with cohorts. We show that naive prior specification can yield misleading inferences, where we propose Laplace prior as an elegant solution. We also perform model averaging to incorporate model uncertainty. Our findings indicate that the APCI model offers better fit and forecast for England and Wales data spanning 1961–2002. Our approach also allows coherent inclusion of multiple sources of uncertainty, producing well-calibrated probabilistic intervals.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2023-03-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1093/jrsssc/qlad021\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1093/jrsssc/qlad021","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Bayesian model comparison for mortality forecasting
Stochastic models are appealing for mortality forecasting in their ability to generate intervals that quantify uncertainties underlying the forecasts. We present a fully Bayesian implementation of the age-period-cohort-improvement (APCI) model with overdispersion, which is compared with the Lee–Carter model with cohorts. We show that naive prior specification can yield misleading inferences, where we propose Laplace prior as an elegant solution. We also perform model averaging to incorporate model uncertainty. Our findings indicate that the APCI model offers better fit and forecast for England and Wales data spanning 1961–2002. Our approach also allows coherent inclusion of multiple sources of uncertainty, producing well-calibrated probabilistic intervals.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.