{"title":"介电弹性体人造肌肉的可能性及其应用","authors":"S. Chiba, M. Waki, M. Takeshita, K. Ohyama","doi":"10.4028/p-jj7z4z","DOIUrl":null,"url":null,"abstract":"The recent developments in dielectric elastomers (DE) are spectacular. Currently, a DE as an actuator, 0.15 g of acrylic sandwiching SWCNT electrodes, is capable of lifting a weight of 8 kg by more than 1 mm at a speed of 88 msec. In the near future, DE motors could be used to drive electric vehicles. Moreover, the DE can be used as a high-efficiency sensor with the same structure. With a diameter of 20 mm and a thickness of 0.5 mm, it can accurately measure pressure from several kg to 150 kg. In addition, reversing this DE actuator (DEA) movement also enables high-efficiency power generation. In other words, when the DEA is stretched or pushed, it generates electric power. Single wall nanotubes (SWCNTs) were used as an electrode, and an acrylic DE power generation cartridge with a diameter of 80 mm was used. When the center of the DE power generation cartridge is pushed by about 15 mm, a power of 33.6 mJ is generated. Using these two DE cartridges, it was possible to charge a secondary battery through a DC converter. In addition to this power generator, practical research and development of power generation using wave power, wind power, waste heat, and fluids (ocean currents, water currents, etc.) is progressing. In this paper, we have described state-of-the-art DEAs, DE generators (including the case that the power generated locally by microgenerators are consumed locally), and DE sensors and explained their usefulness.","PeriodicalId":7271,"journal":{"name":"Advanced Materials Research","volume":"3 3 1","pages":"99 - 117"},"PeriodicalIF":0.0000,"publicationDate":"2023-04-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Possibilities of Artificial Muscles Using Dielectric Elastomers and their Applications\",\"authors\":\"S. Chiba, M. Waki, M. Takeshita, K. Ohyama\",\"doi\":\"10.4028/p-jj7z4z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The recent developments in dielectric elastomers (DE) are spectacular. Currently, a DE as an actuator, 0.15 g of acrylic sandwiching SWCNT electrodes, is capable of lifting a weight of 8 kg by more than 1 mm at a speed of 88 msec. In the near future, DE motors could be used to drive electric vehicles. Moreover, the DE can be used as a high-efficiency sensor with the same structure. With a diameter of 20 mm and a thickness of 0.5 mm, it can accurately measure pressure from several kg to 150 kg. In addition, reversing this DE actuator (DEA) movement also enables high-efficiency power generation. In other words, when the DEA is stretched or pushed, it generates electric power. Single wall nanotubes (SWCNTs) were used as an electrode, and an acrylic DE power generation cartridge with a diameter of 80 mm was used. When the center of the DE power generation cartridge is pushed by about 15 mm, a power of 33.6 mJ is generated. Using these two DE cartridges, it was possible to charge a secondary battery through a DC converter. In addition to this power generator, practical research and development of power generation using wave power, wind power, waste heat, and fluids (ocean currents, water currents, etc.) is progressing. In this paper, we have described state-of-the-art DEAs, DE generators (including the case that the power generated locally by microgenerators are consumed locally), and DE sensors and explained their usefulness.\",\"PeriodicalId\":7271,\"journal\":{\"name\":\"Advanced Materials Research\",\"volume\":\"3 3 1\",\"pages\":\"99 - 117\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-04-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Materials Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4028/p-jj7z4z\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Materials Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4028/p-jj7z4z","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Possibilities of Artificial Muscles Using Dielectric Elastomers and their Applications
The recent developments in dielectric elastomers (DE) are spectacular. Currently, a DE as an actuator, 0.15 g of acrylic sandwiching SWCNT electrodes, is capable of lifting a weight of 8 kg by more than 1 mm at a speed of 88 msec. In the near future, DE motors could be used to drive electric vehicles. Moreover, the DE can be used as a high-efficiency sensor with the same structure. With a diameter of 20 mm and a thickness of 0.5 mm, it can accurately measure pressure from several kg to 150 kg. In addition, reversing this DE actuator (DEA) movement also enables high-efficiency power generation. In other words, when the DEA is stretched or pushed, it generates electric power. Single wall nanotubes (SWCNTs) were used as an electrode, and an acrylic DE power generation cartridge with a diameter of 80 mm was used. When the center of the DE power generation cartridge is pushed by about 15 mm, a power of 33.6 mJ is generated. Using these two DE cartridges, it was possible to charge a secondary battery through a DC converter. In addition to this power generator, practical research and development of power generation using wave power, wind power, waste heat, and fluids (ocean currents, water currents, etc.) is progressing. In this paper, we have described state-of-the-art DEAs, DE generators (including the case that the power generated locally by microgenerators are consumed locally), and DE sensors and explained their usefulness.