基于双层稀疏编码的光照估计

Bing Li, Weihua Xiong, Weiming Hu, Houwen Peng
{"title":"基于双层稀疏编码的光照估计","authors":"Bing Li, Weihua Xiong, Weiming Hu, Houwen Peng","doi":"10.1109/CVPR.2013.187","DOIUrl":null,"url":null,"abstract":"Computational color constancy is a very important topic in computer vision and has attracted many researchers' attention. Recently, lots of research has shown the effects of using high level visual content cues for improving illumination estimation. However, nearly all the existing methods are essentially combinational strategies in which image's content analysis is only used to guide the combination or selection from a variety of individual illumination estimation methods. In this paper, we propose a novel bilayer sparse coding model for illumination estimation that considers image similarity in terms of both low level color distribution and high level image scene content simultaneously. For the purpose, the image's scene content information is integrated with its color distribution to obtain optimal illumination estimation model. The experimental results on real-world image sets show that our algorithm is superior to some prevailing illumination estimation methods, even better than some combinational methods.","PeriodicalId":6343,"journal":{"name":"2013 IEEE Conference on Computer Vision and Pattern Recognition","volume":"40 1","pages":"1423-1429"},"PeriodicalIF":0.0000,"publicationDate":"2013-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":"{\"title\":\"Illumination Estimation Based on Bilayer Sparse Coding\",\"authors\":\"Bing Li, Weihua Xiong, Weiming Hu, Houwen Peng\",\"doi\":\"10.1109/CVPR.2013.187\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Computational color constancy is a very important topic in computer vision and has attracted many researchers' attention. Recently, lots of research has shown the effects of using high level visual content cues for improving illumination estimation. However, nearly all the existing methods are essentially combinational strategies in which image's content analysis is only used to guide the combination or selection from a variety of individual illumination estimation methods. In this paper, we propose a novel bilayer sparse coding model for illumination estimation that considers image similarity in terms of both low level color distribution and high level image scene content simultaneously. For the purpose, the image's scene content information is integrated with its color distribution to obtain optimal illumination estimation model. The experimental results on real-world image sets show that our algorithm is superior to some prevailing illumination estimation methods, even better than some combinational methods.\",\"PeriodicalId\":6343,\"journal\":{\"name\":\"2013 IEEE Conference on Computer Vision and Pattern Recognition\",\"volume\":\"40 1\",\"pages\":\"1423-1429\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-06-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"15\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 IEEE Conference on Computer Vision and Pattern Recognition\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CVPR.2013.187\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE Conference on Computer Vision and Pattern Recognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CVPR.2013.187","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15

摘要

计算色彩恒常性是计算机视觉中一个非常重要的研究课题,引起了许多研究者的关注。近年来,大量的研究表明,使用高水平的视觉内容线索可以提高照明估计的效果。然而,几乎所有现有的方法本质上都是组合策略,仅利用图像的内容分析来指导各种单独的照度估计方法的组合或选择。在本文中,我们提出了一种新的双层稀疏编码模型用于照明估计,该模型同时考虑了低层次颜色分布和高层次图像场景内容的图像相似性。为此,将图像的场景内容信息与其颜色分布相结合,得到最优的照度估计模型。在真实图像集上的实验结果表明,该算法优于一些流行的照度估计方法,甚至优于一些组合方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Illumination Estimation Based on Bilayer Sparse Coding
Computational color constancy is a very important topic in computer vision and has attracted many researchers' attention. Recently, lots of research has shown the effects of using high level visual content cues for improving illumination estimation. However, nearly all the existing methods are essentially combinational strategies in which image's content analysis is only used to guide the combination or selection from a variety of individual illumination estimation methods. In this paper, we propose a novel bilayer sparse coding model for illumination estimation that considers image similarity in terms of both low level color distribution and high level image scene content simultaneously. For the purpose, the image's scene content information is integrated with its color distribution to obtain optimal illumination estimation model. The experimental results on real-world image sets show that our algorithm is superior to some prevailing illumination estimation methods, even better than some combinational methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Segment-Tree Based Cost Aggregation for Stereo Matching Event Retrieval in Large Video Collections with Circulant Temporal Encoding Articulated and Restricted Motion Subspaces and Their Signatures Subspace Interpolation via Dictionary Learning for Unsupervised Domain Adaptation Learning Video Saliency from Human Gaze Using Candidate Selection
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1