AlC3单层吸附剂对二苯醚分子的高效去除:密度泛函理论研究

M. Kadhim, Zainab Talib Abed, Halah Mohammed Azeez, Safa K. Hachim, S. Abdullaha, Mohammed Abdul Hadi, A. Rheima
{"title":"AlC3单层吸附剂对二苯醚分子的高效去除:密度泛函理论研究","authors":"M. Kadhim, Zainab Talib Abed, Halah Mohammed Azeez, Safa K. Hachim, S. Abdullaha, Mohammed Abdul Hadi, A. Rheima","doi":"10.1080/10426507.2023.2211193","DOIUrl":null,"url":null,"abstract":"Abstract In the current research study, the adsorbent efficacy of an aluminum carbide (AlC3) nanosheet for edifenphos fungicide is assessed for the first time. To explore the efficacy of AlC3 as an adsorbent system, several essential properties of edifenphos, AlC3, and the complex of edifenphos-AlC3 are investigated. Edifenphos has an interaction through its -P = O group with the Al atoms of AlC3 with adsorption energy (Eads) of approximately −34.46 kcal/mol. The charge-transfer process is investigated by carrying out the LUMO-HOMO analysis, which is further supported by the NBO analysis. The net value of charge transfer from the edifenphos to AlC3 in the most stable complex is about 0.526 e. In addition, during edifenphos adsorption on the AlC3 surface the energy gap (Eg) of AlC3 was reduced from 2.25 to 1.17 eV. Also, the solvation energy (Esol) values of edifenphos@AlC3 are calculated to be −40.29 kcal/mol, which indicates that edifenphos@AlC3 is stabilized by water via spontaneous solvation. Overall, the results demonstrate that AlC3 can be employed as an effective adsorbent system for edifenphos to treat different forms of wastewater. GRAPHICAL ABSTRACT","PeriodicalId":20043,"journal":{"name":"Phosphorus Sulfur and Silicon and The Related Elements","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"AlC3 monolayer as an efficient adsorbent for removal of edifenphos molecule: a density functional theory study\",\"authors\":\"M. Kadhim, Zainab Talib Abed, Halah Mohammed Azeez, Safa K. Hachim, S. Abdullaha, Mohammed Abdul Hadi, A. Rheima\",\"doi\":\"10.1080/10426507.2023.2211193\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract In the current research study, the adsorbent efficacy of an aluminum carbide (AlC3) nanosheet for edifenphos fungicide is assessed for the first time. To explore the efficacy of AlC3 as an adsorbent system, several essential properties of edifenphos, AlC3, and the complex of edifenphos-AlC3 are investigated. Edifenphos has an interaction through its -P = O group with the Al atoms of AlC3 with adsorption energy (Eads) of approximately −34.46 kcal/mol. The charge-transfer process is investigated by carrying out the LUMO-HOMO analysis, which is further supported by the NBO analysis. The net value of charge transfer from the edifenphos to AlC3 in the most stable complex is about 0.526 e. In addition, during edifenphos adsorption on the AlC3 surface the energy gap (Eg) of AlC3 was reduced from 2.25 to 1.17 eV. Also, the solvation energy (Esol) values of edifenphos@AlC3 are calculated to be −40.29 kcal/mol, which indicates that edifenphos@AlC3 is stabilized by water via spontaneous solvation. Overall, the results demonstrate that AlC3 can be employed as an effective adsorbent system for edifenphos to treat different forms of wastewater. GRAPHICAL ABSTRACT\",\"PeriodicalId\":20043,\"journal\":{\"name\":\"Phosphorus Sulfur and Silicon and The Related Elements\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-05-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Phosphorus Sulfur and Silicon and The Related Elements\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/10426507.2023.2211193\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Phosphorus Sulfur and Silicon and The Related Elements","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/10426507.2023.2211193","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
AlC3 monolayer as an efficient adsorbent for removal of edifenphos molecule: a density functional theory study
Abstract In the current research study, the adsorbent efficacy of an aluminum carbide (AlC3) nanosheet for edifenphos fungicide is assessed for the first time. To explore the efficacy of AlC3 as an adsorbent system, several essential properties of edifenphos, AlC3, and the complex of edifenphos-AlC3 are investigated. Edifenphos has an interaction through its -P = O group with the Al atoms of AlC3 with adsorption energy (Eads) of approximately −34.46 kcal/mol. The charge-transfer process is investigated by carrying out the LUMO-HOMO analysis, which is further supported by the NBO analysis. The net value of charge transfer from the edifenphos to AlC3 in the most stable complex is about 0.526 e. In addition, during edifenphos adsorption on the AlC3 surface the energy gap (Eg) of AlC3 was reduced from 2.25 to 1.17 eV. Also, the solvation energy (Esol) values of edifenphos@AlC3 are calculated to be −40.29 kcal/mol, which indicates that edifenphos@AlC3 is stabilized by water via spontaneous solvation. Overall, the results demonstrate that AlC3 can be employed as an effective adsorbent system for edifenphos to treat different forms of wastewater. GRAPHICAL ABSTRACT
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Probing the limits of tetraalkylthiuram disulfide synthesis by direct reaction of secondary amines with CS2: The structures of Cy2NC(S)SSC(S)NCy2 and Cy2NC(S)SSSSC(S)NCy2 Investigation on TiO2 spin-coated thin films effect on the optoelectronic properties of stain-etched porous silicon for solar cell applications Discovery of in silico pharmacokinetic characteristics, drug-likeness, computational and experimental pKa values of selected unnatural fatty acid derivatives Removal of an organophosphate insecticide from aqueous media using phyllosilicate clay: multivariable optimization, nonlinear kinetic modelling and thermodynamic study Enzymatic resolution of heterocyclic intermediates for biologically active compound preparation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1