{"title":"Eu3+掺杂CoNb2O6荧光粉的结构性质、光致发光和Judd-Ofelt参数","authors":"M. İlhan, Lütfiye Feray Güleryüz, M. K. Ekmekçİ","doi":"10.18596/jotcsa.1294230","DOIUrl":null,"url":null,"abstract":"Trivalent Eu-activated CoNb2O6 phosphors were fabricated using the molten salt method, which provides enhanced homogeneity and low sintering temperature. The ceramic samples were examined by spectral and structural analyses. In X-ray diffractions, the single phase of orthorhombic columbite type CoNb2O6 structure was obtained for 0.5-10 mol% Eu3+ doping concentrations, while a two theta peak shift towards the smaller angles occurred. SEM examinations show an irregular morphology and sub-micron grain sizes. In photoluminescence (PL) spectra, the phosphors showed typical Eu3+ emissions with the 5F0 → 7FJ (J=0, 1, 2, 3, 4) transitions, and high emission peaks were observed at the 5D0 → 7F2 transition. The photoluminescence of CoNb2O6:Eu3+ decreased over 5 mol% because of the concentration quenching. The energy transfer mechanism and critical distance of the phosphor are the dipole-dipole (d–d) interaction, and 15.70 Å, respectively. The spectral features of the phosphors were assessed by calculating the Judd-Ofelt intensity parameters (Ω2, Ω4) from the PL emission spectrum. The low Ω2 parameter values or/and the Ω4>Ω2 trend for CoNb2O6:Eu3+ phosphors were related to the less covalent or more ionic character of the Eu3+–O2˗ bond and the high local symmetry of the Eu3+ sites, while the high Ω4 parameter values may be ascribed to the decrease in the electron density in the ligands.","PeriodicalId":17299,"journal":{"name":"Journal of the Turkish Chemical Society Section A: Chemistry","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Structural Properties, Photoluminescence, and Judd-Ofelt Parameters of Eu3+- Doped CoNb2O6 Phosphor\",\"authors\":\"M. İlhan, Lütfiye Feray Güleryüz, M. K. Ekmekçİ\",\"doi\":\"10.18596/jotcsa.1294230\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Trivalent Eu-activated CoNb2O6 phosphors were fabricated using the molten salt method, which provides enhanced homogeneity and low sintering temperature. The ceramic samples were examined by spectral and structural analyses. In X-ray diffractions, the single phase of orthorhombic columbite type CoNb2O6 structure was obtained for 0.5-10 mol% Eu3+ doping concentrations, while a two theta peak shift towards the smaller angles occurred. SEM examinations show an irregular morphology and sub-micron grain sizes. In photoluminescence (PL) spectra, the phosphors showed typical Eu3+ emissions with the 5F0 → 7FJ (J=0, 1, 2, 3, 4) transitions, and high emission peaks were observed at the 5D0 → 7F2 transition. The photoluminescence of CoNb2O6:Eu3+ decreased over 5 mol% because of the concentration quenching. The energy transfer mechanism and critical distance of the phosphor are the dipole-dipole (d–d) interaction, and 15.70 Å, respectively. The spectral features of the phosphors were assessed by calculating the Judd-Ofelt intensity parameters (Ω2, Ω4) from the PL emission spectrum. The low Ω2 parameter values or/and the Ω4>Ω2 trend for CoNb2O6:Eu3+ phosphors were related to the less covalent or more ionic character of the Eu3+–O2˗ bond and the high local symmetry of the Eu3+ sites, while the high Ω4 parameter values may be ascribed to the decrease in the electron density in the ligands.\",\"PeriodicalId\":17299,\"journal\":{\"name\":\"Journal of the Turkish Chemical Society Section A: Chemistry\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-06-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the Turkish Chemical Society Section A: Chemistry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.18596/jotcsa.1294230\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Turkish Chemical Society Section A: Chemistry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18596/jotcsa.1294230","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Structural Properties, Photoluminescence, and Judd-Ofelt Parameters of Eu3+- Doped CoNb2O6 Phosphor
Trivalent Eu-activated CoNb2O6 phosphors were fabricated using the molten salt method, which provides enhanced homogeneity and low sintering temperature. The ceramic samples were examined by spectral and structural analyses. In X-ray diffractions, the single phase of orthorhombic columbite type CoNb2O6 structure was obtained for 0.5-10 mol% Eu3+ doping concentrations, while a two theta peak shift towards the smaller angles occurred. SEM examinations show an irregular morphology and sub-micron grain sizes. In photoluminescence (PL) spectra, the phosphors showed typical Eu3+ emissions with the 5F0 → 7FJ (J=0, 1, 2, 3, 4) transitions, and high emission peaks were observed at the 5D0 → 7F2 transition. The photoluminescence of CoNb2O6:Eu3+ decreased over 5 mol% because of the concentration quenching. The energy transfer mechanism and critical distance of the phosphor are the dipole-dipole (d–d) interaction, and 15.70 Å, respectively. The spectral features of the phosphors were assessed by calculating the Judd-Ofelt intensity parameters (Ω2, Ω4) from the PL emission spectrum. The low Ω2 parameter values or/and the Ω4>Ω2 trend for CoNb2O6:Eu3+ phosphors were related to the less covalent or more ionic character of the Eu3+–O2˗ bond and the high local symmetry of the Eu3+ sites, while the high Ω4 parameter values may be ascribed to the decrease in the electron density in the ligands.