ccu - dsg @因果新闻语料库2022:用于因果事件分类的RoBERTa变压器变体的融合

Abdul Aziz, Md. Akram Hossain, Abu Nowshed Chy
{"title":"ccu - dsg @因果新闻语料库2022:用于因果事件分类的RoBERTa变压器变体的融合","authors":"Abdul Aziz, Md. Akram Hossain, Abu Nowshed Chy","doi":"10.18653/v1/2022.case-1.19","DOIUrl":null,"url":null,"abstract":"Identifying cause-effect relationships in sentences is one of the formidable tasks to tackle the challenges of inference and understanding of natural language. However, the diversity of word semantics and sentence structure makes it challenging to determine the causal relationship effectively. To address these challenges, CASE-2022 shared task 3 introduced a task focusing on event causality identification with causal news corpus. This paper presents our participation in this task, especially in subtask 1 which is the causal event classification task. To tackle the task challenge, we propose a unified neural model through exploiting two fine-tuned transformer models including RoBERTa and Twitter-RoBERTa. For the score fusion, we combine the prediction scores of each component model using weighted arithmetic mean to generate the probability score for class label identification. The experimental results showed that our proposed method achieved the top performance (ranked 1st) among the participants.","PeriodicalId":80307,"journal":{"name":"The Case manager","volume":"15 1","pages":"138-142"},"PeriodicalIF":0.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"CSECU-DSG @ Causal News Corpus 2022: Fusion of RoBERTa Transformers Variants for Causal Event Classification\",\"authors\":\"Abdul Aziz, Md. Akram Hossain, Abu Nowshed Chy\",\"doi\":\"10.18653/v1/2022.case-1.19\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Identifying cause-effect relationships in sentences is one of the formidable tasks to tackle the challenges of inference and understanding of natural language. However, the diversity of word semantics and sentence structure makes it challenging to determine the causal relationship effectively. To address these challenges, CASE-2022 shared task 3 introduced a task focusing on event causality identification with causal news corpus. This paper presents our participation in this task, especially in subtask 1 which is the causal event classification task. To tackle the task challenge, we propose a unified neural model through exploiting two fine-tuned transformer models including RoBERTa and Twitter-RoBERTa. For the score fusion, we combine the prediction scores of each component model using weighted arithmetic mean to generate the probability score for class label identification. The experimental results showed that our proposed method achieved the top performance (ranked 1st) among the participants.\",\"PeriodicalId\":80307,\"journal\":{\"name\":\"The Case manager\",\"volume\":\"15 1\",\"pages\":\"138-142\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Case manager\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.18653/v1/2022.case-1.19\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Case manager","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18653/v1/2022.case-1.19","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

识别句子中的因果关系是解决自然语言推理和理解挑战的艰巨任务之一。然而,词汇语义和句子结构的多样性给有效确定因果关系带来了挑战。为了应对这些挑战,CASE-2022共享任务3引入了一个任务,重点是用因果新闻语料库识别事件因果关系。本文介绍了我们在这个任务中的参与情况,特别是在子任务1中,即因果事件分类任务。为了解决任务挑战,我们提出了一个统一的神经模型,通过利用两个微调的变压器模型,包括RoBERTa和Twitter-RoBERTa。对于分数融合,我们使用加权算术平均值将各成分模型的预测分数组合起来,生成用于类标签识别的概率分数。实验结果表明,我们提出的方法在参与者中获得了最高的性能(排名第一)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
CSECU-DSG @ Causal News Corpus 2022: Fusion of RoBERTa Transformers Variants for Causal Event Classification
Identifying cause-effect relationships in sentences is one of the formidable tasks to tackle the challenges of inference and understanding of natural language. However, the diversity of word semantics and sentence structure makes it challenging to determine the causal relationship effectively. To address these challenges, CASE-2022 shared task 3 introduced a task focusing on event causality identification with causal news corpus. This paper presents our participation in this task, especially in subtask 1 which is the causal event classification task. To tackle the task challenge, we propose a unified neural model through exploiting two fine-tuned transformer models including RoBERTa and Twitter-RoBERTa. For the score fusion, we combine the prediction scores of each component model using weighted arithmetic mean to generate the probability score for class label identification. The experimental results showed that our proposed method achieved the top performance (ranked 1st) among the participants.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Drivers and scorecards to improve hypertension control in primary care practice: Recommendations from the HEARTS in the Americas Innovation Group. NLP4ITF @ Causal News Corpus 2022: Leveraging Linguistic Information for Event Causality Classification SPOCK @ Causal News Corpus 2022: Cause-Effect-Signal Span Detection Using Span-Based and Sequence Tagging Models CEIA-NLP at CASE 2022 Task 1: Protest News Detection for Portuguese Point cloud extraction of aircraft skin butt joint based on adaptive matching calibration algorithm
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1