事件相机同时光流和光强估计

Patrick Bardow, A. Davison, Stefan Leutenegger
{"title":"事件相机同时光流和光强估计","authors":"Patrick Bardow, A. Davison, Stefan Leutenegger","doi":"10.1109/CVPR.2016.102","DOIUrl":null,"url":null,"abstract":"Event cameras are bio-inspired vision sensors which mimic retinas to measure per-pixel intensity change rather than outputting an actual intensity image. This proposed paradigm shift away from traditional frame cameras offers significant potential advantages: namely avoiding high data rates, dynamic range limitations and motion blur. Unfortunately, however, established computer vision algorithms may not at all be applied directly to event cameras. Methods proposed so far to reconstruct images, estimate optical flow, track a camera and reconstruct a scene come with severe restrictions on the environment or on the motion of the camera, e.g. allowing only rotation. Here, we propose, to the best of our knowledge, the first algorithm to simultaneously recover the motion field and brightness image, while the camera undergoes a generic motion through any scene. Our approach employs minimisation of a cost function that contains the asynchronous event data as well as spatial and temporal regularisation within a sliding window time interval. Our implementation relies on GPU optimisation and runs in near real-time. In a series of examples, we demonstrate the successful operation of our framework, including in situations where conventional cameras suffer from dynamic range limitations and motion blur.","PeriodicalId":6515,"journal":{"name":"2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)","volume":"43 1","pages":"884-892"},"PeriodicalIF":0.0000,"publicationDate":"2016-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"220","resultStr":"{\"title\":\"Simultaneous Optical Flow and Intensity Estimation from an Event Camera\",\"authors\":\"Patrick Bardow, A. Davison, Stefan Leutenegger\",\"doi\":\"10.1109/CVPR.2016.102\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Event cameras are bio-inspired vision sensors which mimic retinas to measure per-pixel intensity change rather than outputting an actual intensity image. This proposed paradigm shift away from traditional frame cameras offers significant potential advantages: namely avoiding high data rates, dynamic range limitations and motion blur. Unfortunately, however, established computer vision algorithms may not at all be applied directly to event cameras. Methods proposed so far to reconstruct images, estimate optical flow, track a camera and reconstruct a scene come with severe restrictions on the environment or on the motion of the camera, e.g. allowing only rotation. Here, we propose, to the best of our knowledge, the first algorithm to simultaneously recover the motion field and brightness image, while the camera undergoes a generic motion through any scene. Our approach employs minimisation of a cost function that contains the asynchronous event data as well as spatial and temporal regularisation within a sliding window time interval. Our implementation relies on GPU optimisation and runs in near real-time. In a series of examples, we demonstrate the successful operation of our framework, including in situations where conventional cameras suffer from dynamic range limitations and motion blur.\",\"PeriodicalId\":6515,\"journal\":{\"name\":\"2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)\",\"volume\":\"43 1\",\"pages\":\"884-892\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-12-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"220\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CVPR.2016.102\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CVPR.2016.102","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 220

摘要

事件相机是仿生视觉传感器,它模仿视网膜来测量每像素的强度变化,而不是输出实际的强度图像。这种从传统画幅相机转变而来的模式提供了显著的潜在优势:即避免高数据速率、动态范围限制和运动模糊。然而,不幸的是,现有的计算机视觉算法可能根本不能直接应用于事件摄像机。目前提出的重建图像、估计光流、跟踪相机和重建场景的方法都对环境或相机的运动有严格的限制,例如只允许旋转。在这里,我们提出,据我们所知,第一个算法,同时恢复运动场和亮度图像,而相机经历了一个通用的运动通过任何场景。我们的方法采用最小化成本函数,该函数包含异步事件数据以及滑动窗口时间间隔内的空间和时间正则化。我们的实现依赖于GPU优化并在接近实时的情况下运行。在一系列的例子中,我们展示了我们的框架的成功运作,包括在传统相机受到动态范围限制和运动模糊的情况下。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Simultaneous Optical Flow and Intensity Estimation from an Event Camera
Event cameras are bio-inspired vision sensors which mimic retinas to measure per-pixel intensity change rather than outputting an actual intensity image. This proposed paradigm shift away from traditional frame cameras offers significant potential advantages: namely avoiding high data rates, dynamic range limitations and motion blur. Unfortunately, however, established computer vision algorithms may not at all be applied directly to event cameras. Methods proposed so far to reconstruct images, estimate optical flow, track a camera and reconstruct a scene come with severe restrictions on the environment or on the motion of the camera, e.g. allowing only rotation. Here, we propose, to the best of our knowledge, the first algorithm to simultaneously recover the motion field and brightness image, while the camera undergoes a generic motion through any scene. Our approach employs minimisation of a cost function that contains the asynchronous event data as well as spatial and temporal regularisation within a sliding window time interval. Our implementation relies on GPU optimisation and runs in near real-time. In a series of examples, we demonstrate the successful operation of our framework, including in situations where conventional cameras suffer from dynamic range limitations and motion blur.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Sketch Me That Shoe Multivariate Regression on the Grassmannian for Predicting Novel Domains How Hard Can It Be? Estimating the Difficulty of Visual Search in an Image Discovering the Physical Parts of an Articulated Object Class from Multiple Videos Simultaneous Optical Flow and Intensity Estimation from an Event Camera
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1