{"title":"弥漫性光学断层扫描在间质光热治疗期间监测光凝前沿:组织模拟幻象中的数值模拟和测量","authors":"Jie He, B. Wilson, D. Piao, R. Weersink","doi":"10.1515/plm-2014-0011","DOIUrl":null,"url":null,"abstract":"Abstract Near-infrared interstitial photothermal therapy (PTT) is currently undergoing clinical trials as an alternative to watchful waiting or radical treatments in patients with low/intermediate-risk focal prostate cancer. Currently, magnetic resonance imaging (MRI)-based thermography is used to monitor thermal energy delivery and determine indirectly the completeness of the target tumor destruction while avoiding damage to adjacent normal tissues, particularly the rectal wall. As an alternative, transrectal diffuse optical tomography (TRDOT) is being developed to image directly the photocoagulation boundary based on the changes in tissue optical properties, particularly scattering. An established diffusion-theory finite-element software platform was used to perform forward simulations to determine the sensitivity of changes in the optical signal resulting from a growing coagulated lesion with optical scattering contrast, for varying light source-detector separations in both longitudinal and transverse imaging geometries. The simulations were validated experimentally in tissue-simulating phantoms using an existing continuous-wave TRDOT system, in a configuration that is representative of one potential intended clinical use. This provides critical guidance for the optimum design of the transrectal applicator probe, in terms of achieving maximum sensitivity to the presence of the coagulation boundary and, consequently, the highest accuracy in determining the boundary location relative to the rectal wall.","PeriodicalId":20126,"journal":{"name":"Photonics & Lasers in Medicine","volume":"12 1","pages":"241 - 254"},"PeriodicalIF":0.0000,"publicationDate":"2014-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Diffuse optical tomography to monitor the photocoagulation front during interstitial photothermal therapy: Numerical simulations and measurements in tissue-simulating phantoms\",\"authors\":\"Jie He, B. Wilson, D. Piao, R. Weersink\",\"doi\":\"10.1515/plm-2014-0011\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Near-infrared interstitial photothermal therapy (PTT) is currently undergoing clinical trials as an alternative to watchful waiting or radical treatments in patients with low/intermediate-risk focal prostate cancer. Currently, magnetic resonance imaging (MRI)-based thermography is used to monitor thermal energy delivery and determine indirectly the completeness of the target tumor destruction while avoiding damage to adjacent normal tissues, particularly the rectal wall. As an alternative, transrectal diffuse optical tomography (TRDOT) is being developed to image directly the photocoagulation boundary based on the changes in tissue optical properties, particularly scattering. An established diffusion-theory finite-element software platform was used to perform forward simulations to determine the sensitivity of changes in the optical signal resulting from a growing coagulated lesion with optical scattering contrast, for varying light source-detector separations in both longitudinal and transverse imaging geometries. The simulations were validated experimentally in tissue-simulating phantoms using an existing continuous-wave TRDOT system, in a configuration that is representative of one potential intended clinical use. This provides critical guidance for the optimum design of the transrectal applicator probe, in terms of achieving maximum sensitivity to the presence of the coagulation boundary and, consequently, the highest accuracy in determining the boundary location relative to the rectal wall.\",\"PeriodicalId\":20126,\"journal\":{\"name\":\"Photonics & Lasers in Medicine\",\"volume\":\"12 1\",\"pages\":\"241 - 254\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Photonics & Lasers in Medicine\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/plm-2014-0011\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Photonics & Lasers in Medicine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/plm-2014-0011","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Diffuse optical tomography to monitor the photocoagulation front during interstitial photothermal therapy: Numerical simulations and measurements in tissue-simulating phantoms
Abstract Near-infrared interstitial photothermal therapy (PTT) is currently undergoing clinical trials as an alternative to watchful waiting or radical treatments in patients with low/intermediate-risk focal prostate cancer. Currently, magnetic resonance imaging (MRI)-based thermography is used to monitor thermal energy delivery and determine indirectly the completeness of the target tumor destruction while avoiding damage to adjacent normal tissues, particularly the rectal wall. As an alternative, transrectal diffuse optical tomography (TRDOT) is being developed to image directly the photocoagulation boundary based on the changes in tissue optical properties, particularly scattering. An established diffusion-theory finite-element software platform was used to perform forward simulations to determine the sensitivity of changes in the optical signal resulting from a growing coagulated lesion with optical scattering contrast, for varying light source-detector separations in both longitudinal and transverse imaging geometries. The simulations were validated experimentally in tissue-simulating phantoms using an existing continuous-wave TRDOT system, in a configuration that is representative of one potential intended clinical use. This provides critical guidance for the optimum design of the transrectal applicator probe, in terms of achieving maximum sensitivity to the presence of the coagulation boundary and, consequently, the highest accuracy in determining the boundary location relative to the rectal wall.