Ni 50Mn 25Ga 20Fe 5薄膜中奥氏体与马氏体组织的转变

Y. Ge, L. Straka, M. Vronka, A. Sozinov, O. Heczko
{"title":"Ni 50Mn 25Ga 20Fe 5薄膜中奥氏体与马氏体组织的转变","authors":"Y. Ge, L. Straka, M. Vronka, A. Sozinov, O. Heczko","doi":"10.2139/ssrn.3813433","DOIUrl":null,"url":null,"abstract":"Using common and high resolution transmission electron microscopy, we study the evolution of crystal structure with increasing thickness in a thin Ni<sub>50</sub>Mn<sub>25</sub>Ga<sub>20</sub>Fe<sub>5</sub> foil. Iron alloying enables to observe the complete spectrum of known martensitic phases and respective transitions simultaneously. Starting from cubic austenite at about 30 nm foil thickness, the structure evolves via interleaved stripes of austenite and five-layered modulated 10M martensite to pure 10M phase with low density of stacking faults. With increasing thickness the 10M phase transforms gradually to seven-layered modulated 14M by increasing density of stacking faults. Finally the non-modulated tetragonal NM phase appears within the 14M phase by detwinning of nanotwins. We found large local variation of lattice parameters, which is ascribed to elastically very soft austenite and 10M phase and faulty 14M lattice. Our experiments show clearly that nanotwinning and stacking faults are inherent structure features tightly connected with lattice modulation and intermartensite transformations. This is important finding in broader attempt to bridge the gap between the nanotwinning and modulation period development with temperature and composition. From the application point of view, the observed instability of modulation or of particular phases in thin films imposes certain limits on the use of material on microscale.","PeriodicalId":9858,"journal":{"name":"Chemical Engineering (Engineering) eJournal","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Transitions Between Austenite and Martensite Structures in Ni 50Mn 25Ga 20Fe 5 Thin Foil\",\"authors\":\"Y. Ge, L. Straka, M. Vronka, A. Sozinov, O. Heczko\",\"doi\":\"10.2139/ssrn.3813433\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Using common and high resolution transmission electron microscopy, we study the evolution of crystal structure with increasing thickness in a thin Ni<sub>50</sub>Mn<sub>25</sub>Ga<sub>20</sub>Fe<sub>5</sub> foil. Iron alloying enables to observe the complete spectrum of known martensitic phases and respective transitions simultaneously. Starting from cubic austenite at about 30 nm foil thickness, the structure evolves via interleaved stripes of austenite and five-layered modulated 10M martensite to pure 10M phase with low density of stacking faults. With increasing thickness the 10M phase transforms gradually to seven-layered modulated 14M by increasing density of stacking faults. Finally the non-modulated tetragonal NM phase appears within the 14M phase by detwinning of nanotwins. We found large local variation of lattice parameters, which is ascribed to elastically very soft austenite and 10M phase and faulty 14M lattice. Our experiments show clearly that nanotwinning and stacking faults are inherent structure features tightly connected with lattice modulation and intermartensite transformations. This is important finding in broader attempt to bridge the gap between the nanotwinning and modulation period development with temperature and composition. From the application point of view, the observed instability of modulation or of particular phases in thin films imposes certain limits on the use of material on microscale.\",\"PeriodicalId\":9858,\"journal\":{\"name\":\"Chemical Engineering (Engineering) eJournal\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemical Engineering (Engineering) eJournal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2139/ssrn.3813433\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Engineering (Engineering) eJournal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.3813433","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

利用普通透射电镜和高分辨率透射电镜,研究了Ni50Mn25Ga20Fe5薄膜随厚度增加晶体结构的演变。铁合金化可以同时观察到已知马氏体相的完整谱和各自的转变。从约30 nm箔厚的立方奥氏体开始,由奥氏体和5层调制10M马氏体的交错条纹演变为具有低密度层错的纯10M相。随着厚度的增加,10M相随着层错密度的增加逐渐转变为7层调制的14M相。最后,通过纳米孪晶的脱孪,在14M相中出现了非调制的四方NM相。我们发现晶格参数的局部变化很大,这归因于弹性非常软的奥氏体和10M相以及缺陷的14M晶格。我们的实验清楚地表明,纳米孪晶和层错是与晶格调制和马氏体相变密切相关的固有结构特征。这是一个重要的发现,在更广泛的尝试弥合纳米孪晶和调制周期发展与温度和成分之间的差距。从应用的角度来看,在薄膜中观察到的调制或特定相的不稳定性对材料在微尺度上的使用施加了一定的限制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Transitions Between Austenite and Martensite Structures in Ni 50Mn 25Ga 20Fe 5 Thin Foil
Using common and high resolution transmission electron microscopy, we study the evolution of crystal structure with increasing thickness in a thin Ni50Mn25Ga20Fe5 foil. Iron alloying enables to observe the complete spectrum of known martensitic phases and respective transitions simultaneously. Starting from cubic austenite at about 30 nm foil thickness, the structure evolves via interleaved stripes of austenite and five-layered modulated 10M martensite to pure 10M phase with low density of stacking faults. With increasing thickness the 10M phase transforms gradually to seven-layered modulated 14M by increasing density of stacking faults. Finally the non-modulated tetragonal NM phase appears within the 14M phase by detwinning of nanotwins. We found large local variation of lattice parameters, which is ascribed to elastically very soft austenite and 10M phase and faulty 14M lattice. Our experiments show clearly that nanotwinning and stacking faults are inherent structure features tightly connected with lattice modulation and intermartensite transformations. This is important finding in broader attempt to bridge the gap between the nanotwinning and modulation period development with temperature and composition. From the application point of view, the observed instability of modulation or of particular phases in thin films imposes certain limits on the use of material on microscale.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Deep Eutectic Solvent Assisted Facile and Efficient Synthesis of Nitrogen-Doped Magnetic Biochar for Hexavalent Chromium Elimination: Mechanism and Performance Insights Computational Simulation of Ionization Processes in Single-Bubble and Multi-Bubble Sonoluminescence Microbubbles for Effective Cleaning of Metal Surfaces Without Chemical Agents Unprecedented Age-Hardening and its Structural Requirement in a Severely Deformed Al-Cu-Mg Alloy Elucidating the Interaction of Enantiomeric Cu(Ii) Complexes with DNA, Rna and Hsa: A Comparative Study
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1