变分光流模型的自适应平滑参数策略

Sci. Program. Pub Date : 2021-12-29 DOI:10.1155/2021/7594636
H. Z. H. Alsharif, Tong Shu, Bin Zhu, Farisi Zeyad Sahl
{"title":"变分光流模型的自适应平滑参数策略","authors":"H. Z. H. Alsharif, Tong Shu, Bin Zhu, Farisi Zeyad Sahl","doi":"10.1155/2021/7594636","DOIUrl":null,"url":null,"abstract":"The smoothness parameter is used to balance the weight of the data term and the smoothness term in variational optical flow model, which plays very significant role for the optical flow estimation, but existing methods fail to obtain the optimal smoothness parameters (OSP). In order to solve this problem, an adaptive smoothness parameter strategy is proposed. First, an amalgamated simple linear iterative cluster (SLIC) and local membership function (LMF) algorithm is used to segment the entire image into several superpixel regions. Then, image quality parameters (IQP) are calculated, respectively, for each superpixel region. Finally, a neural network model is applied to compute the smoothness parameter by these image quality parameters of each superpixel region. Experiments were done in three public datasets (Middlebury, MPI_Sintel, and KITTI) and our self-constructed outdoor dataset with the proposed method and other existing classical methods; the results show that our OSP method achieves higher accuracy than other smoothness parameter selection methods in all these four datasets. Combined with the dual fractional order variational optical flow model (DFOVOFM), the proposed model shows better performance than other models in scenes with illumination inhomogeneity and abnormity. The OSP method fills the blank of the research of adaptive smoothness parameter, pushing the development of the variational optical flow models.","PeriodicalId":21628,"journal":{"name":"Sci. Program.","volume":"1 1","pages":"7594636:1-7594636:12"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An Adaptive Smoothness Parameter Strategy for Variational Optical Flow Model\",\"authors\":\"H. Z. H. Alsharif, Tong Shu, Bin Zhu, Farisi Zeyad Sahl\",\"doi\":\"10.1155/2021/7594636\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The smoothness parameter is used to balance the weight of the data term and the smoothness term in variational optical flow model, which plays very significant role for the optical flow estimation, but existing methods fail to obtain the optimal smoothness parameters (OSP). In order to solve this problem, an adaptive smoothness parameter strategy is proposed. First, an amalgamated simple linear iterative cluster (SLIC) and local membership function (LMF) algorithm is used to segment the entire image into several superpixel regions. Then, image quality parameters (IQP) are calculated, respectively, for each superpixel region. Finally, a neural network model is applied to compute the smoothness parameter by these image quality parameters of each superpixel region. Experiments were done in three public datasets (Middlebury, MPI_Sintel, and KITTI) and our self-constructed outdoor dataset with the proposed method and other existing classical methods; the results show that our OSP method achieves higher accuracy than other smoothness parameter selection methods in all these four datasets. Combined with the dual fractional order variational optical flow model (DFOVOFM), the proposed model shows better performance than other models in scenes with illumination inhomogeneity and abnormity. The OSP method fills the blank of the research of adaptive smoothness parameter, pushing the development of the variational optical flow models.\",\"PeriodicalId\":21628,\"journal\":{\"name\":\"Sci. Program.\",\"volume\":\"1 1\",\"pages\":\"7594636:1-7594636:12\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-12-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Sci. Program.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1155/2021/7594636\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sci. Program.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2021/7594636","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在变分光流模型中,平滑参数用于平衡数据项和光流项的权重,在光流估计中起着非常重要的作用,但现有的方法无法获得最优的平滑参数(OSP)。为了解决这一问题,提出了一种自适应平滑参数策略。首先,采用简单线性迭代聚类(SLIC)和局部隶属函数(LMF)混合算法将整幅图像分割成多个超像素区域;然后,分别计算每个超像素区域的图像质量参数(IQP)。最后,利用神经网络模型对每个超像素区域的图像质量参数进行平滑度计算。在Middlebury、mpi_sinintel和KITTI三个公共数据集和我们自己构建的室外数据集上,采用本文提出的方法和其他经典方法进行了实验;结果表明,在这4个数据集上,我们的OSP方法比其他平滑参数选择方法具有更高的精度。结合双分数阶变分光流模型(DFOVOFM),该模型在光照不均匀和异常的场景下表现出较好的性能。OSP方法填补了自适应平滑参数研究的空白,推动了变分光流模型的发展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
An Adaptive Smoothness Parameter Strategy for Variational Optical Flow Model
The smoothness parameter is used to balance the weight of the data term and the smoothness term in variational optical flow model, which plays very significant role for the optical flow estimation, but existing methods fail to obtain the optimal smoothness parameters (OSP). In order to solve this problem, an adaptive smoothness parameter strategy is proposed. First, an amalgamated simple linear iterative cluster (SLIC) and local membership function (LMF) algorithm is used to segment the entire image into several superpixel regions. Then, image quality parameters (IQP) are calculated, respectively, for each superpixel region. Finally, a neural network model is applied to compute the smoothness parameter by these image quality parameters of each superpixel region. Experiments were done in three public datasets (Middlebury, MPI_Sintel, and KITTI) and our self-constructed outdoor dataset with the proposed method and other existing classical methods; the results show that our OSP method achieves higher accuracy than other smoothness parameter selection methods in all these four datasets. Combined with the dual fractional order variational optical flow model (DFOVOFM), the proposed model shows better performance than other models in scenes with illumination inhomogeneity and abnormity. The OSP method fills the blank of the research of adaptive smoothness parameter, pushing the development of the variational optical flow models.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Liquid Democracy Enabled Blockchain-Based Electronic Voting System Bike-Sharing Fleet Allocation Optimization Based on Demand Gap and Cycle Rebalancing Strategies Research on the Intelligent Assignment Model of Urban Traffic Planning Based on Optimal Path Optimization Algorithm Online Teaching Wireless Video Stream Resource Dynamic Allocation Method considering Node Ability The Path of Film and Television Animation Creation Using Virtual Reality Technology under the Artificial Intelligence
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1