用好氧颗粒污泥系统从水溶液中去除结晶紫

C. Bumbac, E. Manea, O. Tiron
{"title":"用好氧颗粒污泥系统从水溶液中去除结晶紫","authors":"C. Bumbac, E. Manea, O. Tiron","doi":"10.21698/rjeec.2021.107","DOIUrl":null,"url":null,"abstract":"The paper presents a set of comparative tests to evaluate the inhibitory effect of crystal violet on the respiration rate of microorganisms in conventional activated sludge and aerobic granular sludge. The tests were performed in similar conditions with the only variable of the type of sludge tested. The results emphasized that the aerobic granular sludge is less susceptible to the toxicity induced by crystal violet. The concentration of crystal violet that inhibits by 50% (CE50) the respiration rate of sludge microorganisms was determined to be, for the specific test conditions, 22.39 mg/L for the conventional activated sludge and 33.88 mg/L for the aerobic granular sludge. The paper also assesses the biodegradability potential of crystal violet from aqueous solution, in the presence of sodium acetate as co-substrate in a lab-scale sequential biological reactor with aerobic granular sludge. The experiments showed that most of the crystal violet is being initially absorbed in the matrix of the granules during the first minutes and subsequently is being removed with efficiencies above 95% within a treatment cycle of 8 hours.","PeriodicalId":21370,"journal":{"name":"Romanian Journal of Ecology & Environmental Chemistry","volume":"17 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Removal of crystal violet from aqueous solutions using an aerobic granular sludge system\",\"authors\":\"C. Bumbac, E. Manea, O. Tiron\",\"doi\":\"10.21698/rjeec.2021.107\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The paper presents a set of comparative tests to evaluate the inhibitory effect of crystal violet on the respiration rate of microorganisms in conventional activated sludge and aerobic granular sludge. The tests were performed in similar conditions with the only variable of the type of sludge tested. The results emphasized that the aerobic granular sludge is less susceptible to the toxicity induced by crystal violet. The concentration of crystal violet that inhibits by 50% (CE50) the respiration rate of sludge microorganisms was determined to be, for the specific test conditions, 22.39 mg/L for the conventional activated sludge and 33.88 mg/L for the aerobic granular sludge. The paper also assesses the biodegradability potential of crystal violet from aqueous solution, in the presence of sodium acetate as co-substrate in a lab-scale sequential biological reactor with aerobic granular sludge. The experiments showed that most of the crystal violet is being initially absorbed in the matrix of the granules during the first minutes and subsequently is being removed with efficiencies above 95% within a treatment cycle of 8 hours.\",\"PeriodicalId\":21370,\"journal\":{\"name\":\"Romanian Journal of Ecology & Environmental Chemistry\",\"volume\":\"17 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-06-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Romanian Journal of Ecology & Environmental Chemistry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.21698/rjeec.2021.107\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Romanian Journal of Ecology & Environmental Chemistry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21698/rjeec.2021.107","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

通过一组对比试验,评价了结晶紫对常规活性污泥和好氧颗粒污泥中微生物呼吸速率的抑制作用。试验是在类似的条件下进行的,唯一的变量是所测试的污泥类型。结果表明,好氧颗粒污泥对结晶紫的毒性反应较弱。在特定试验条件下,测定出抑制污泥微生物呼吸速率50% (CE50)的结晶紫浓度为:常规活性污泥浓度为22.39 mg/L,好氧颗粒污泥浓度为33.88 mg/L。本文还评估了结晶紫在醋酸钠作为共底物存在的情况下,在实验室规模的顺序生物反应器中与好氧颗粒污泥的生物降解潜力。实验表明,大部分结晶紫在最初的几分钟内被颗粒的基质吸收,随后在8小时的处理周期内以95%以上的效率被去除。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Removal of crystal violet from aqueous solutions using an aerobic granular sludge system
The paper presents a set of comparative tests to evaluate the inhibitory effect of crystal violet on the respiration rate of microorganisms in conventional activated sludge and aerobic granular sludge. The tests were performed in similar conditions with the only variable of the type of sludge tested. The results emphasized that the aerobic granular sludge is less susceptible to the toxicity induced by crystal violet. The concentration of crystal violet that inhibits by 50% (CE50) the respiration rate of sludge microorganisms was determined to be, for the specific test conditions, 22.39 mg/L for the conventional activated sludge and 33.88 mg/L for the aerobic granular sludge. The paper also assesses the biodegradability potential of crystal violet from aqueous solution, in the presence of sodium acetate as co-substrate in a lab-scale sequential biological reactor with aerobic granular sludge. The experiments showed that most of the crystal violet is being initially absorbed in the matrix of the granules during the first minutes and subsequently is being removed with efficiencies above 95% within a treatment cycle of 8 hours.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
pH-metric method determining the solubility and solubility products of slightly soluble salts of arbitrary composition Chemical characterization methods for biodegradable organic wastes with relevance for the composting process. Case study In vitro effect of salinity and pH on Fusarium sp., the causal agent of sweet-potato root rot Assessment of environmental pollution level caused by shipbuilding industry pH-metric method for determining the solubility and solubility products of slightly soluble hydroxides and acids
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1