使用结构形状分解的阿拉伯手写字符识别

Abdullah A. Al-Shaher, E. Hancock
{"title":"使用结构形状分解的阿拉伯手写字符识别","authors":"Abdullah A. Al-Shaher, E. Hancock","doi":"10.5121/SIPIJ.2017.8201","DOIUrl":null,"url":null,"abstract":"This paper presents a statistical framework for recognising 2D shapes which are represented as an arrangement of curves or strokes. The approach is a hierarchical one which mixes geometric and symbolic information in a three-layer architecture. Each curve primitive is represented using a point-distribution model which describes how its shape varies over a set of training data. We assign stroke labels to the primitives and these indicate to which class they belong. Shapes are decomposed into an arrangement of primitives and the global shape representation has two components. The first of these is a second point distribution model that is used to represent the geometric arrangement of the curve centre-points. The second component is a string of stroke labels that represents the symbolic arrangement of strokes. Hence each shape can be represented by a set of centre-point deformation parameters and a dictionary of permissible stroke label configurations. The hierarchy is a two-level architecture in which the curve models reside at the nonterminal lower level of the tree. The top level represents the curve arrangements allowed by the dictionary of permissible stroke combinations. The aim in recognition is to minimise the cross entropy between the probability distributions for geometric alignment errors and curve label errors. We show how the stroke parameters, shape-alignment parameters and stroke labels may be recovered by applying the expectation maximization EM algorithm to the utility measure. We apply the resulting shape-recognition method to Arabic character recognition.","PeriodicalId":90726,"journal":{"name":"Signal and image processing : an international journal","volume":"18 1","pages":"01-11"},"PeriodicalIF":0.0000,"publicationDate":"2017-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Arabic Handwritten Character Recognition Using Structural Shape Decomposition\",\"authors\":\"Abdullah A. Al-Shaher, E. Hancock\",\"doi\":\"10.5121/SIPIJ.2017.8201\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a statistical framework for recognising 2D shapes which are represented as an arrangement of curves or strokes. The approach is a hierarchical one which mixes geometric and symbolic information in a three-layer architecture. Each curve primitive is represented using a point-distribution model which describes how its shape varies over a set of training data. We assign stroke labels to the primitives and these indicate to which class they belong. Shapes are decomposed into an arrangement of primitives and the global shape representation has two components. The first of these is a second point distribution model that is used to represent the geometric arrangement of the curve centre-points. The second component is a string of stroke labels that represents the symbolic arrangement of strokes. Hence each shape can be represented by a set of centre-point deformation parameters and a dictionary of permissible stroke label configurations. The hierarchy is a two-level architecture in which the curve models reside at the nonterminal lower level of the tree. The top level represents the curve arrangements allowed by the dictionary of permissible stroke combinations. The aim in recognition is to minimise the cross entropy between the probability distributions for geometric alignment errors and curve label errors. We show how the stroke parameters, shape-alignment parameters and stroke labels may be recovered by applying the expectation maximization EM algorithm to the utility measure. We apply the resulting shape-recognition method to Arabic character recognition.\",\"PeriodicalId\":90726,\"journal\":{\"name\":\"Signal and image processing : an international journal\",\"volume\":\"18 1\",\"pages\":\"01-11\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-04-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Signal and image processing : an international journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5121/SIPIJ.2017.8201\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Signal and image processing : an international journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5121/SIPIJ.2017.8201","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一个用于识别二维形状的统计框架,这些形状表示为曲线或笔画的排列。该方法是一种在三层结构中混合几何和符号信息的分层方法。每个曲线原语都使用点分布模型来表示,该模型描述了其形状在一组训练数据上的变化情况。我们为原语分配笔画标签,这些标签表明它们属于哪个类。形状被分解成一组原语,全局形状表示有两个组成部分。第一个是第二个点分布模型,用来表示曲线中心点的几何排列。第二个组件是一串笔画标签,表示笔画的符号排列。因此,每个形状都可以用一组中心点变形参数和允许的笔画标号配置字典来表示。层次结构是一个两层架构,其中曲线模型位于树的非终端较低级别。顶层表示允许笔画组合字典所允许的曲线排列。识别的目的是最小化几何对齐误差和曲线标记误差概率分布之间的交叉熵。我们展示了如何通过将期望最大化EM算法应用于效用度量来恢复笔画参数、形状对齐参数和笔画标签。我们将得到的形状识别方法应用于阿拉伯字符识别。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Arabic Handwritten Character Recognition Using Structural Shape Decomposition
This paper presents a statistical framework for recognising 2D shapes which are represented as an arrangement of curves or strokes. The approach is a hierarchical one which mixes geometric and symbolic information in a three-layer architecture. Each curve primitive is represented using a point-distribution model which describes how its shape varies over a set of training data. We assign stroke labels to the primitives and these indicate to which class they belong. Shapes are decomposed into an arrangement of primitives and the global shape representation has two components. The first of these is a second point distribution model that is used to represent the geometric arrangement of the curve centre-points. The second component is a string of stroke labels that represents the symbolic arrangement of strokes. Hence each shape can be represented by a set of centre-point deformation parameters and a dictionary of permissible stroke label configurations. The hierarchy is a two-level architecture in which the curve models reside at the nonterminal lower level of the tree. The top level represents the curve arrangements allowed by the dictionary of permissible stroke combinations. The aim in recognition is to minimise the cross entropy between the probability distributions for geometric alignment errors and curve label errors. We show how the stroke parameters, shape-alignment parameters and stroke labels may be recovered by applying the expectation maximization EM algorithm to the utility measure. We apply the resulting shape-recognition method to Arabic character recognition.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Omni-Modeler: Rapid Adaptive Visual Recognition with Dynamic Learning A Comparative Study of Machine Learning Algorithms for EEG Signal Classification Combining of Narrative News and VR Games: Comparison of Various Forms of News Games Mixed Spectra for Stable Signals from Discrete Observations Fractional Order Butterworth Filter for Fetal Electrocardiographic Signal Feature Extraction
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1