Yuuki Nishiyama, Denzil Ferreira, Wataru Sasaki, T. Okoshi, J. Nakazawa, A. Dey, K. Sezaki
{"title":"使用iOS进行不显眼的数据收集:现实世界的评估","authors":"Yuuki Nishiyama, Denzil Ferreira, Wataru Sasaki, T. Okoshi, J. Nakazawa, A. Dey, K. Sezaki","doi":"10.1145/3410530.3414369","DOIUrl":null,"url":null,"abstract":"Mobile Crowd Sensing (MCS) is a method for collecting multiple sensor data from distributed mobile devices for understanding social and behavioral phenomena. The method requires collecting the sensor data 24/7, ideally inconspicuously to minimize bias. Although several MCS tools for collecting the sensor data from an off-the-shelf smartphone are proposed and evaluated under controlled conditions as a benchmark, the performance in a practical sensing study condition is scarce, especially on iOS. In this paper, we assess the data collection quality of AWARE iOS, installed on off-the-shelf iOS smartphones with 9 participants for a week. Our analysis shows that more than 97% of sensor data, provided by hardware sensors (i.e., accelerometer, location, and pedometer sensor), is successfully collected in real-world conditions, unless a user explicitly quits our data collection application.","PeriodicalId":7183,"journal":{"name":"Adjunct Proceedings of the 2020 ACM International Joint Conference on Pervasive and Ubiquitous Computing and Proceedings of the 2020 ACM International Symposium on Wearable Computers","volume":"32 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Using iOS for inconspicuous data collection: a real-world assessment\",\"authors\":\"Yuuki Nishiyama, Denzil Ferreira, Wataru Sasaki, T. Okoshi, J. Nakazawa, A. Dey, K. Sezaki\",\"doi\":\"10.1145/3410530.3414369\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Mobile Crowd Sensing (MCS) is a method for collecting multiple sensor data from distributed mobile devices for understanding social and behavioral phenomena. The method requires collecting the sensor data 24/7, ideally inconspicuously to minimize bias. Although several MCS tools for collecting the sensor data from an off-the-shelf smartphone are proposed and evaluated under controlled conditions as a benchmark, the performance in a practical sensing study condition is scarce, especially on iOS. In this paper, we assess the data collection quality of AWARE iOS, installed on off-the-shelf iOS smartphones with 9 participants for a week. Our analysis shows that more than 97% of sensor data, provided by hardware sensors (i.e., accelerometer, location, and pedometer sensor), is successfully collected in real-world conditions, unless a user explicitly quits our data collection application.\",\"PeriodicalId\":7183,\"journal\":{\"name\":\"Adjunct Proceedings of the 2020 ACM International Joint Conference on Pervasive and Ubiquitous Computing and Proceedings of the 2020 ACM International Symposium on Wearable Computers\",\"volume\":\"32 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-09-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Adjunct Proceedings of the 2020 ACM International Joint Conference on Pervasive and Ubiquitous Computing and Proceedings of the 2020 ACM International Symposium on Wearable Computers\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3410530.3414369\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Adjunct Proceedings of the 2020 ACM International Joint Conference on Pervasive and Ubiquitous Computing and Proceedings of the 2020 ACM International Symposium on Wearable Computers","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3410530.3414369","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Using iOS for inconspicuous data collection: a real-world assessment
Mobile Crowd Sensing (MCS) is a method for collecting multiple sensor data from distributed mobile devices for understanding social and behavioral phenomena. The method requires collecting the sensor data 24/7, ideally inconspicuously to minimize bias. Although several MCS tools for collecting the sensor data from an off-the-shelf smartphone are proposed and evaluated under controlled conditions as a benchmark, the performance in a practical sensing study condition is scarce, especially on iOS. In this paper, we assess the data collection quality of AWARE iOS, installed on off-the-shelf iOS smartphones with 9 participants for a week. Our analysis shows that more than 97% of sensor data, provided by hardware sensors (i.e., accelerometer, location, and pedometer sensor), is successfully collected in real-world conditions, unless a user explicitly quits our data collection application.