中心复合法制备纳米聚合物凝胶凝胶时间的实验与理论研究

Mohsen Seidmohammadi, E. Sahraei, B. Bayati
{"title":"中心复合法制备纳米聚合物凝胶凝胶时间的实验与理论研究","authors":"Mohsen Seidmohammadi, E. Sahraei, B. Bayati","doi":"10.22050/IJOGST.2020.208529.1525","DOIUrl":null,"url":null,"abstract":"Currently available polymers as a component of in-situ gels are unsuitable for treating high-temperature/high-salinity reservoirs due to their chemical and thermal degradation. In this study, a new copolymer-based gel system including high molecular weight nanostructured polymers (NSPs) was developed to address the excessive water production problem in reservoirs under harsh conditions. The stability of conventional polymer systems and NSPs was investigated under conditions of 40 days aging at 87000 ppm salinity and 90 °C. Then, gelation time optimization of gel systems composed of NSPs and chromium (III) acetate was performed with regards to the effect of copolymer concentration and copolymer/cross-linker ratio and their interactions during the gelation time. The central composite approach was used to design experiments and build a mathematical model. The analysis of variance (ANOVA) was used to estimate the deviation of the model predictions from the data. The results of stability analysis demonstrated the advantages of NSPs over conventional polymers by a viscosity reduction of 69, 36, and 18% for Flopaam3310, AN105, and NSPs respectively. The model developed for the prediction of gelation time of NSPs gel was significant at a confidence level of 98.6% against the test data. Moreover, it was found that gelation time became longer with a decrease in copolymer concentrations and/or increase in copolymer/cross-linker ratio.","PeriodicalId":14575,"journal":{"name":"Iranian Journal of Oil and Gas Science and Technology","volume":"35 1","pages":"81-92"},"PeriodicalIF":0.0000,"publicationDate":"2020-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Experimental and Theoretical Investigation of Gelation Time of Nanostructured Polymer Gels by Central Composite Approach\",\"authors\":\"Mohsen Seidmohammadi, E. Sahraei, B. Bayati\",\"doi\":\"10.22050/IJOGST.2020.208529.1525\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Currently available polymers as a component of in-situ gels are unsuitable for treating high-temperature/high-salinity reservoirs due to their chemical and thermal degradation. In this study, a new copolymer-based gel system including high molecular weight nanostructured polymers (NSPs) was developed to address the excessive water production problem in reservoirs under harsh conditions. The stability of conventional polymer systems and NSPs was investigated under conditions of 40 days aging at 87000 ppm salinity and 90 °C. Then, gelation time optimization of gel systems composed of NSPs and chromium (III) acetate was performed with regards to the effect of copolymer concentration and copolymer/cross-linker ratio and their interactions during the gelation time. The central composite approach was used to design experiments and build a mathematical model. The analysis of variance (ANOVA) was used to estimate the deviation of the model predictions from the data. The results of stability analysis demonstrated the advantages of NSPs over conventional polymers by a viscosity reduction of 69, 36, and 18% for Flopaam3310, AN105, and NSPs respectively. The model developed for the prediction of gelation time of NSPs gel was significant at a confidence level of 98.6% against the test data. Moreover, it was found that gelation time became longer with a decrease in copolymer concentrations and/or increase in copolymer/cross-linker ratio.\",\"PeriodicalId\":14575,\"journal\":{\"name\":\"Iranian Journal of Oil and Gas Science and Technology\",\"volume\":\"35 1\",\"pages\":\"81-92\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Iranian Journal of Oil and Gas Science and Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22050/IJOGST.2020.208529.1525\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Iranian Journal of Oil and Gas Science and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22050/IJOGST.2020.208529.1525","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

目前可用的聚合物作为原位凝胶的组成部分,由于其化学和热降解,不适合处理高温/高矿化度油藏。在这项研究中,开发了一种新的共聚物凝胶体系,包括高分子量纳米结构聚合物(NSPs),以解决恶劣条件下油藏的过量产水问题。在87000 ppm盐度和90℃条件下,研究了常规聚合物体系和NSPs在40天老化条件下的稳定性。然后,从共聚物浓度、共聚物/交联比及其相互作用对NSPs与醋酸铬凝胶体系凝胶化时间的影响进行了优化。采用中心复合方法设计实验,建立数学模型。方差分析(ANOVA)用于估计模型预测与数据的偏差。稳定性分析结果表明,与传统聚合物相比,Flopaam3310、AN105和NSPs的粘度分别降低了69%、36%和18%。建立的NSPs凝胶胶凝时间预测模型与试验数据的置信水平为98.6%,具有显著性。此外,还发现随着共聚物浓度的降低和共聚物/交联剂比的增加,胶凝时间变长。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Experimental and Theoretical Investigation of Gelation Time of Nanostructured Polymer Gels by Central Composite Approach
Currently available polymers as a component of in-situ gels are unsuitable for treating high-temperature/high-salinity reservoirs due to their chemical and thermal degradation. In this study, a new copolymer-based gel system including high molecular weight nanostructured polymers (NSPs) was developed to address the excessive water production problem in reservoirs under harsh conditions. The stability of conventional polymer systems and NSPs was investigated under conditions of 40 days aging at 87000 ppm salinity and 90 °C. Then, gelation time optimization of gel systems composed of NSPs and chromium (III) acetate was performed with regards to the effect of copolymer concentration and copolymer/cross-linker ratio and their interactions during the gelation time. The central composite approach was used to design experiments and build a mathematical model. The analysis of variance (ANOVA) was used to estimate the deviation of the model predictions from the data. The results of stability analysis demonstrated the advantages of NSPs over conventional polymers by a viscosity reduction of 69, 36, and 18% for Flopaam3310, AN105, and NSPs respectively. The model developed for the prediction of gelation time of NSPs gel was significant at a confidence level of 98.6% against the test data. Moreover, it was found that gelation time became longer with a decrease in copolymer concentrations and/or increase in copolymer/cross-linker ratio.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Relation between asphaltene adsorption on the nanoparticles surface and asphaltene precipitation inhibition during real crude oil natural depletion tests Evaluation of a novel mechanistic approach to predict transport of water and ions through shale Investigation of origin, sedimentary environment and preservation of organic matter: A case study in Garau Formation Detection of heavy bitumen contaminations with using corrected Rock-Eval pyrolysis data Geochemical Investigation of Trace Metals in Crude Oils from Some Producing Oil Fields in Niger Delta, Nigeria
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1