基于改进YOLO v4的人体检测算法

IF 2 4区 计算机科学 Q3 AUTOMATION & CONTROL SYSTEMS Information Technology and Control Pub Date : 2022-09-23 DOI:10.5755/j01.itc.51.3.30540
Xuan Zhou, Jianping Yi, Guokun Xie, Yajuan Jia, Genqi Xu, Min Sun
{"title":"基于改进YOLO v4的人体检测算法","authors":"Xuan Zhou, Jianping Yi, Guokun Xie, Yajuan Jia, Genqi Xu, Min Sun","doi":"10.5755/j01.itc.51.3.30540","DOIUrl":null,"url":null,"abstract":"The human behavior datasets have the characteristics of complex background, diverse poses, partial occlusion, and diverse sizes. Firstly, this paper adopts YOLO v3 and YOLO v4 algorithms to detect human objects in videos, and qualitatively analyzes and compares detection performance of two algorithms on UTI, UCF101, HMDB51 and CASIA datasets. Then, this paper proposed an improved YOLO v4 algorithm since the vanilla YOLO v4 has incomplete human detection in specific video frames. Specifically, the improved YOLO v4 introduces the Ghost module in the CBM module to further reduce the number of parameters. Lateral connection is added in the CSP module to improve the feature representation capability of the network. Furthermore, we also substitute MaxPool with SoftPool in the primary SPP module, which not only avoids the feature loss, but also provides a regularization effect for the network, thus improving the generalization ability of the network. Finally, this paper qualitatively compares the detection effects of the improved YOLO v4 and primary YOLO v4 algorithm on specific datasets. The experimental results show that the improved YOLO v4 can solve the problem of complex targets in human detection tasks effectively, and further improve the detection speed.","PeriodicalId":54982,"journal":{"name":"Information Technology and Control","volume":"27 1","pages":"485-498"},"PeriodicalIF":2.0000,"publicationDate":"2022-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Human Detection Algorithm Based on Improved YOLO v4\",\"authors\":\"Xuan Zhou, Jianping Yi, Guokun Xie, Yajuan Jia, Genqi Xu, Min Sun\",\"doi\":\"10.5755/j01.itc.51.3.30540\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The human behavior datasets have the characteristics of complex background, diverse poses, partial occlusion, and diverse sizes. Firstly, this paper adopts YOLO v3 and YOLO v4 algorithms to detect human objects in videos, and qualitatively analyzes and compares detection performance of two algorithms on UTI, UCF101, HMDB51 and CASIA datasets. Then, this paper proposed an improved YOLO v4 algorithm since the vanilla YOLO v4 has incomplete human detection in specific video frames. Specifically, the improved YOLO v4 introduces the Ghost module in the CBM module to further reduce the number of parameters. Lateral connection is added in the CSP module to improve the feature representation capability of the network. Furthermore, we also substitute MaxPool with SoftPool in the primary SPP module, which not only avoids the feature loss, but also provides a regularization effect for the network, thus improving the generalization ability of the network. Finally, this paper qualitatively compares the detection effects of the improved YOLO v4 and primary YOLO v4 algorithm on specific datasets. The experimental results show that the improved YOLO v4 can solve the problem of complex targets in human detection tasks effectively, and further improve the detection speed.\",\"PeriodicalId\":54982,\"journal\":{\"name\":\"Information Technology and Control\",\"volume\":\"27 1\",\"pages\":\"485-498\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2022-09-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Information Technology and Control\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.5755/j01.itc.51.3.30540\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Information Technology and Control","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.5755/j01.itc.51.3.30540","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 3

摘要

人类行为数据集具有背景复杂、姿态多样、局部遮挡、大小不一等特点。首先,本文采用YOLO v3和YOLO v4算法对视频中的人体目标进行检测,并对两种算法在UTI、UCF101、HMDB51和CASIA数据集上的检测性能进行定性分析和比较。然后,针对普通的YOLO v4在特定视频帧中存在不完全的人类检测问题,提出了一种改进的YOLO v4算法。具体来说,改进的YOLO v4在CBM模块中引入了Ghost模块,以进一步减少参数的数量。在CSP模块中加入横向连接,提高网络的特征表示能力。此外,我们还将主SPP模块中的MaxPool替换为SoftPool,既避免了特征损失,又为网络提供了正则化效果,从而提高了网络的泛化能力。最后,对改进后的YOLO v4算法和主要YOLO v4算法在特定数据集上的检测效果进行了定性比较。实验结果表明,改进的YOLO v4能够有效解决人工检测任务中复杂目标的问题,进一步提高检测速度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Human Detection Algorithm Based on Improved YOLO v4
The human behavior datasets have the characteristics of complex background, diverse poses, partial occlusion, and diverse sizes. Firstly, this paper adopts YOLO v3 and YOLO v4 algorithms to detect human objects in videos, and qualitatively analyzes and compares detection performance of two algorithms on UTI, UCF101, HMDB51 and CASIA datasets. Then, this paper proposed an improved YOLO v4 algorithm since the vanilla YOLO v4 has incomplete human detection in specific video frames. Specifically, the improved YOLO v4 introduces the Ghost module in the CBM module to further reduce the number of parameters. Lateral connection is added in the CSP module to improve the feature representation capability of the network. Furthermore, we also substitute MaxPool with SoftPool in the primary SPP module, which not only avoids the feature loss, but also provides a regularization effect for the network, thus improving the generalization ability of the network. Finally, this paper qualitatively compares the detection effects of the improved YOLO v4 and primary YOLO v4 algorithm on specific datasets. The experimental results show that the improved YOLO v4 can solve the problem of complex targets in human detection tasks effectively, and further improve the detection speed.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Information Technology and Control
Information Technology and Control 工程技术-计算机:人工智能
CiteScore
2.70
自引率
9.10%
发文量
36
审稿时长
12 months
期刊介绍: Periodical journal covers a wide field of computer science and control systems related problems including: -Software and hardware engineering; -Management systems engineering; -Information systems and databases; -Embedded systems; -Physical systems modelling and application; -Computer networks and cloud computing; -Data visualization; -Human-computer interface; -Computer graphics, visual analytics, and multimedia systems.
期刊最新文献
Model construction of big data asset management system for digital power grid regulation Melanoma Diagnosis Using Enhanced Faster Region Convolutional Neural Networks Optimized by Artificial Gorilla Troops Algorithm A Scalable and Stacked Ensemble Approach to Improve Intrusion Detection in Clouds Traffic Sign Detection Algorithm Based on Improved Yolox Apply Physical System Model and Computer Algorithm to Identify Osmanthus Fragrans Seed Vigor Based on Hyperspectral Imaging and Convolutional Neural Network
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1