在软件项目中使用智能系统进行风险管理

O. A. Gushchina
{"title":"在软件项目中使用智能系统进行风险管理","authors":"O. A. Gushchina","doi":"10.15507/0236-2910.027.201702.250-263","DOIUrl":null,"url":null,"abstract":"Введение. В статье выявляются основные риски программного проекта; исследуется применение различных видов интеллектуальных систем в процессе управления рисками программных проектов; рассматриваются основополагающие методы, используемые для процессов оценивания и прогнозирования в области программной инженерии; выявляются используемые в настоящее время пустые экспертные системы, программные комплексы анализа и управления рисками программных проектов. Материалы и методы. В статье раскрываются особенности управления рисками в области программной инженерии с привлечением интеллектуальных систем. Интеллектуальные методы, положенные в основу систем искусственного интеллекта, позволяют частично и/или полностью решать задачу управления с экспертной точностью без привлечения людей-экспертов. Результаты исследования. Выявлены основные риски программного проекта (налоговые, юридические, финансовые, торговые, IT-риски, риски персонала, риски, связанные конкурентами, поставщиками, маркетингом, спросом и рынком). Исследованы современные, применяемые для управления рисками программных проектов системы искусственного интеллекта, в частности экспертные системы и программные средства оценивания результатов процесса. Выявлены наиболее востребованные пустые экспертные системы (Clips, G2 и Leonardo) и программные продукты анализа больших баз данных (Orange, Weka Rattle GUI, Apache Mahout, SCaViS, RapidMiner, Databionic ESOM Tools, ELKI, KNIME, Pandas и UIMA). Рассмотрены кластерный, корреляционный, регрессионный, факторный и дисперсионный анализы как методы, на основы которых выполняется оценивание и прогнозирование процессов программной инженерии. Обсуждение и заключения. Результаты, полученные в ходе проведенного исследования, показывают целесообразность применения различных интеллектуальных систем в процессе управления рисками обозначенных в статье программных проектов. Проведенный анализ методов оценивания рисков, а также тенденции их применения в современных системах интеллектуального анализа могут служить базой для создания единой системы управления рисками программных проектов средней и высокой сложности с заранее заданной структурой проекта. УДК 004.413.4 DOI: 10.15507/0236-2910.027.201702.250-263","PeriodicalId":53930,"journal":{"name":"Mordovia University Bulletin","volume":"48 1","pages":"250-263"},"PeriodicalIF":0.0000,"publicationDate":"2017-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The use of intelligent systems for risk management in software projects\",\"authors\":\"O. A. Gushchina\",\"doi\":\"10.15507/0236-2910.027.201702.250-263\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Введение. В статье выявляются основные риски программного проекта; исследуется применение различных видов интеллектуальных систем в процессе управления рисками программных проектов; рассматриваются основополагающие методы, используемые для процессов оценивания и прогнозирования в области программной инженерии; выявляются используемые в настоящее время пустые экспертные системы, программные комплексы анализа и управления рисками программных проектов. Материалы и методы. В статье раскрываются особенности управления рисками в области программной инженерии с привлечением интеллектуальных систем. Интеллектуальные методы, положенные в основу систем искусственного интеллекта, позволяют частично и/или полностью решать задачу управления с экспертной точностью без привлечения людей-экспертов. Результаты исследования. Выявлены основные риски программного проекта (налоговые, юридические, финансовые, торговые, IT-риски, риски персонала, риски, связанные конкурентами, поставщиками, маркетингом, спросом и рынком). Исследованы современные, применяемые для управления рисками программных проектов системы искусственного интеллекта, в частности экспертные системы и программные средства оценивания результатов процесса. Выявлены наиболее востребованные пустые экспертные системы (Clips, G2 и Leonardo) и программные продукты анализа больших баз данных (Orange, Weka Rattle GUI, Apache Mahout, SCaViS, RapidMiner, Databionic ESOM Tools, ELKI, KNIME, Pandas и UIMA). Рассмотрены кластерный, корреляционный, регрессионный, факторный и дисперсионный анализы как методы, на основы которых выполняется оценивание и прогнозирование процессов программной инженерии. Обсуждение и заключения. Результаты, полученные в ходе проведенного исследования, показывают целесообразность применения различных интеллектуальных систем в процессе управления рисками обозначенных в статье программных проектов. Проведенный анализ методов оценивания рисков, а также тенденции их применения в современных системах интеллектуального анализа могут служить базой для создания единой системы управления рисками программных проектов средней и высокой сложности с заранее заданной структурой проекта. УДК 004.413.4 DOI: 10.15507/0236-2910.027.201702.250-263\",\"PeriodicalId\":53930,\"journal\":{\"name\":\"Mordovia University Bulletin\",\"volume\":\"48 1\",\"pages\":\"250-263\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mordovia University Bulletin\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.15507/0236-2910.027.201702.250-263\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mordovia University Bulletin","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15507/0236-2910.027.201702.250-263","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

引入。这篇文章暴露了项目的主要风险;研究不同类型的智能系统在项目风险管理过程中的应用;考虑用于软件工程评估和预测过程的基本方法;目前正在使用的是空的专家系统、软件分析和风险管理综合体。材料和方法。这篇文章揭示了软件工程风险管理的特点,涉及到智能系统。人工智能系统的智能方法允许在不吸引专家的情况下,部分和/或全部以专家的精度来处理管理问题。研究结果。软件项目的主要风险(税收、法律、金融、金融、IT风险、员工风险、竞争对手、供应商、市场、需求和市场相关的风险)已经暴露出来。研究用于管理人工智能软件项目风险的现代项目,特别是专家系统和软件评估过程结果的方法。主要数据库分析软件(Orange、Weka Rattle GUI、Apache Mahout、SCaViS、RapidMiner、Databionic ESOM工具、ELKI、KNIME、Pandas和UIMA)已经被发现。它将集群、相关、回归、因子和分散分析视为评估和预测软件工程过程的方法。讨论和结论。这项研究的结果表明,在软件项目中指定的风险管理过程中使用不同的智能系统是合理的。对风险评估方法及其在现代智能分析系统中的应用趋势的分析可以作为一个基础,以创建一个中级和高水平项目风险管理系统,同时建立预先确定的项目结构。100,15507 /0236- 29107,201722,250 -263
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
The use of intelligent systems for risk management in software projects
Введение. В статье выявляются основные риски программного проекта; исследуется применение различных видов интеллектуальных систем в процессе управления рисками программных проектов; рассматриваются основополагающие методы, используемые для процессов оценивания и прогнозирования в области программной инженерии; выявляются используемые в настоящее время пустые экспертные системы, программные комплексы анализа и управления рисками программных проектов. Материалы и методы. В статье раскрываются особенности управления рисками в области программной инженерии с привлечением интеллектуальных систем. Интеллектуальные методы, положенные в основу систем искусственного интеллекта, позволяют частично и/или полностью решать задачу управления с экспертной точностью без привлечения людей-экспертов. Результаты исследования. Выявлены основные риски программного проекта (налоговые, юридические, финансовые, торговые, IT-риски, риски персонала, риски, связанные конкурентами, поставщиками, маркетингом, спросом и рынком). Исследованы современные, применяемые для управления рисками программных проектов системы искусственного интеллекта, в частности экспертные системы и программные средства оценивания результатов процесса. Выявлены наиболее востребованные пустые экспертные системы (Clips, G2 и Leonardo) и программные продукты анализа больших баз данных (Orange, Weka Rattle GUI, Apache Mahout, SCaViS, RapidMiner, Databionic ESOM Tools, ELKI, KNIME, Pandas и UIMA). Рассмотрены кластерный, корреляционный, регрессионный, факторный и дисперсионный анализы как методы, на основы которых выполняется оценивание и прогнозирование процессов программной инженерии. Обсуждение и заключения. Результаты, полученные в ходе проведенного исследования, показывают целесообразность применения различных интеллектуальных систем в процессе управления рисками обозначенных в статье программных проектов. Проведенный анализ методов оценивания рисков, а также тенденции их применения в современных системах интеллектуального анализа могут служить базой для создания единой системы управления рисками программных проектов средней и высокой сложности с заранее заданной структурой проекта. УДК 004.413.4 DOI: 10.15507/0236-2910.027.201702.250-263
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Mordovia University Bulletin
Mordovia University Bulletin MULTIDISCIPLINARY SCIENCES-
自引率
0.00%
发文量
0
期刊最新文献
Automated Unit for Magnetic-Pulse Processing of Plants in Horticulture The Resource of Movable Sealing Joints with the O-Ring Seal Modeling of Stress-Strain State in Connection Resource Defines of Volumetric Hydraulic Drive The Parametrization of the Cauchy Problem for Nonlinear Differential Equations with Contrast Structures The Installation for Processing of Parts with a Complex Profile of Working Surface
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1