银杏:用于高性能计算的现代线性算子代数框架

H. Anzt, T. Cojean, Goran Flegar, Fritz Göbel, Thomas Grützmacher, Pratik Nayak, T. Ribizel, Yu-Hsiang Tsai, E. S. Quintana‐Ortí
{"title":"银杏:用于高性能计算的现代线性算子代数框架","authors":"H. Anzt, T. Cojean, Goran Flegar, Fritz Göbel, Thomas Grützmacher, Pratik Nayak, T. Ribizel, Yu-Hsiang Tsai, E. S. Quintana‐Ortí","doi":"10.1145/3480935","DOIUrl":null,"url":null,"abstract":"In this article, we present Ginkgo, a modern C++ math library for scientific high performance computing. While classical linear algebra libraries act on matrix and vector objects, Ginkgo’s design principle abstracts all functionality as “linear operators,” motivating the notation of a “linear operator algebra library.” Ginkgo’s current focus is oriented toward providing sparse linear algebra functionality for high performance graphics processing unit (GPU) architectures, but given the library design, this focus can be easily extended to accommodate other algorithms and hardware architectures. We introduce this sophisticated software architecture that separates core algorithms from architecture-specific backends and provide details on extensibility and sustainability measures. We also demonstrate Ginkgo’s usability by providing examples on how to use its functionality inside the MFEM and deal.ii finite element ecosystems. Finally, we offer a practical demonstration of Ginkgo’s high performance on state-of-the-art GPU architectures.","PeriodicalId":7036,"journal":{"name":"ACM Transactions on Mathematical Software (TOMS)","volume":"33 1","pages":"1 - 33"},"PeriodicalIF":0.0000,"publicationDate":"2020-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"40","resultStr":"{\"title\":\"Ginkgo: A Modern Linear Operator Algebra Framework for High Performance Computing\",\"authors\":\"H. Anzt, T. Cojean, Goran Flegar, Fritz Göbel, Thomas Grützmacher, Pratik Nayak, T. Ribizel, Yu-Hsiang Tsai, E. S. Quintana‐Ortí\",\"doi\":\"10.1145/3480935\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this article, we present Ginkgo, a modern C++ math library for scientific high performance computing. While classical linear algebra libraries act on matrix and vector objects, Ginkgo’s design principle abstracts all functionality as “linear operators,” motivating the notation of a “linear operator algebra library.” Ginkgo’s current focus is oriented toward providing sparse linear algebra functionality for high performance graphics processing unit (GPU) architectures, but given the library design, this focus can be easily extended to accommodate other algorithms and hardware architectures. We introduce this sophisticated software architecture that separates core algorithms from architecture-specific backends and provide details on extensibility and sustainability measures. We also demonstrate Ginkgo’s usability by providing examples on how to use its functionality inside the MFEM and deal.ii finite element ecosystems. Finally, we offer a practical demonstration of Ginkgo’s high performance on state-of-the-art GPU architectures.\",\"PeriodicalId\":7036,\"journal\":{\"name\":\"ACM Transactions on Mathematical Software (TOMS)\",\"volume\":\"33 1\",\"pages\":\"1 - 33\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-06-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"40\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Transactions on Mathematical Software (TOMS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3480935\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Mathematical Software (TOMS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3480935","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 40

摘要

在本文中,我们介绍了Ginkgo,一个用于科学高性能计算的现代c++数学库。当经典的线性代数库作用于矩阵和向量对象时,Ginkgo的设计原则将所有功能抽象为“线性算子”,从而激发了“线性算子代数库”的符号。Ginkgo目前的重点是为高性能图形处理单元(GPU)架构提供稀疏线性代数功能,但是考虑到库的设计,这个重点可以很容易地扩展到适应其他算法和硬件架构。我们将介绍这种复杂的软件体系结构,它将核心算法与特定于体系结构的后端分离开来,并提供有关可扩展性和可持续性措施的详细信息。我们还通过提供如何在MFEM和deal中使用其功能的示例来演示Ginkgo的可用性。Ii有限元生态系统。最后,我们提供了Ginkgo在最先进的GPU架构上的高性能的实际演示。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Ginkgo: A Modern Linear Operator Algebra Framework for High Performance Computing
In this article, we present Ginkgo, a modern C++ math library for scientific high performance computing. While classical linear algebra libraries act on matrix and vector objects, Ginkgo’s design principle abstracts all functionality as “linear operators,” motivating the notation of a “linear operator algebra library.” Ginkgo’s current focus is oriented toward providing sparse linear algebra functionality for high performance graphics processing unit (GPU) architectures, but given the library design, this focus can be easily extended to accommodate other algorithms and hardware architectures. We introduce this sophisticated software architecture that separates core algorithms from architecture-specific backends and provide details on extensibility and sustainability measures. We also demonstrate Ginkgo’s usability by providing examples on how to use its functionality inside the MFEM and deal.ii finite element ecosystems. Finally, we offer a practical demonstration of Ginkgo’s high performance on state-of-the-art GPU architectures.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Configurable Open-source Data Structure for Distributed Conforming Unstructured Homogeneous Meshes with GPU Support Algorithm 1027: NOMAD Version 4: Nonlinear Optimization with the MADS Algorithm Toward Accurate and Fast Summation Algorithm 1028: VTMOP: Solver for Blackbox Multiobjective Optimization Problems Parallel QR Factorization of Block Low-rank Matrices
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1