晶状体和其他组织中的醛糖还原酶活性

S. Hayman, M.F. Lou, L.O. Merola, J.H. Kinoshita
{"title":"晶状体和其他组织中的醛糖还原酶活性","authors":"S. Hayman,&nbsp;M.F. Lou,&nbsp;L.O. Merola,&nbsp;J.H. Kinoshita","doi":"10.1016/0926-6593(66)90008-7","DOIUrl":null,"url":null,"abstract":"<div><p></p><ul><li><span>1.</span><span><p>1. The distribution of aldose-reducing activities was studied in several rabbit organs. Although all the organs studied had the ability to use NADPH as a cofactor for the reduction of xylose, the different substrate specificities observed suggest that the activity may be due to the presence of at least two different enzymes. These were aldose reductase (polyol:NADP<sup>+</sup> oxidoreductase, EC 1.1.1.21), in lens, adrenal and skeletal muscle and NADP<sup>+</sup>-<span>L</span>-hexonate dehydrogenase (<span>L</span>-gulonate:NADP<sup>+</sup> oxidoreductase, EC 1.1.1.19) in liver, kidney, heart, spinal cord and brain.</p></span></li><li><span>2.</span><span><p>2. Calf lenses were dissected into three portions: capsule (including the epithelium), cortex and nucleus, and the concentrations of aldose reductase, galactokinase, (ATP:<span>D</span>-galactose 1-phosphotransferase, EC 2.7.1.6) and glucose-6-phosphate dehydrogenase (<span>D</span>-glucose-6-phosphate:NADP<sup>+</sup> oxidoreductase, EC 1.1.1.49) were determined in the soluble fractions of the extracts. The distribution patterns were different for the three enzymesl the ratio cortex:epithelium:nucleus was 1:21:1.1 for aldose reductase; 1:3:0.02 for galactokinase and 1:7:0.04 for glucose-6-phosphate dehydrogenase.</p></span></li><li><span>3.</span><span><p>3. When calf lenses were incubated in media containing galactose, the accumulation of dulcitol was greatest in the epithelial region and least in the nucleus with an intermediate amount in the cortex.</p></span></li><li><span>4.</span><span><p>4. No biosynthesis of ascorbate from either <span>D</span>-[6-<sup>14</sup>C]glucuronate or <span>D</span>-[6-<sup>14</sup>C]-glucuronolactone could be demonstrated in incubated rabbit lens. However, there was conversion of the labeled carbon to CO<sub>2</sub> and some accumulation of labeled <span>L</span>-gulonate. Aldose reductase, although it reduces glucuronate to <span>L</span>-gulonate, does not appear to be involved in ascorbate biosynthesis.</p></span></li></ul></div>","PeriodicalId":100160,"journal":{"name":"Biochimica et Biophysica Acta (BBA) - Enzymology and Biological Oxidation","volume":"128 3","pages":"Pages 474-482"},"PeriodicalIF":0.0000,"publicationDate":"1966-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/0926-6593(66)90008-7","citationCount":"80","resultStr":"{\"title\":\"Aldose reductase activity in the lens and other tissues\",\"authors\":\"S. Hayman,&nbsp;M.F. Lou,&nbsp;L.O. Merola,&nbsp;J.H. Kinoshita\",\"doi\":\"10.1016/0926-6593(66)90008-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p></p><ul><li><span>1.</span><span><p>1. The distribution of aldose-reducing activities was studied in several rabbit organs. Although all the organs studied had the ability to use NADPH as a cofactor for the reduction of xylose, the different substrate specificities observed suggest that the activity may be due to the presence of at least two different enzymes. These were aldose reductase (polyol:NADP<sup>+</sup> oxidoreductase, EC 1.1.1.21), in lens, adrenal and skeletal muscle and NADP<sup>+</sup>-<span>L</span>-hexonate dehydrogenase (<span>L</span>-gulonate:NADP<sup>+</sup> oxidoreductase, EC 1.1.1.19) in liver, kidney, heart, spinal cord and brain.</p></span></li><li><span>2.</span><span><p>2. Calf lenses were dissected into three portions: capsule (including the epithelium), cortex and nucleus, and the concentrations of aldose reductase, galactokinase, (ATP:<span>D</span>-galactose 1-phosphotransferase, EC 2.7.1.6) and glucose-6-phosphate dehydrogenase (<span>D</span>-glucose-6-phosphate:NADP<sup>+</sup> oxidoreductase, EC 1.1.1.49) were determined in the soluble fractions of the extracts. The distribution patterns were different for the three enzymesl the ratio cortex:epithelium:nucleus was 1:21:1.1 for aldose reductase; 1:3:0.02 for galactokinase and 1:7:0.04 for glucose-6-phosphate dehydrogenase.</p></span></li><li><span>3.</span><span><p>3. When calf lenses were incubated in media containing galactose, the accumulation of dulcitol was greatest in the epithelial region and least in the nucleus with an intermediate amount in the cortex.</p></span></li><li><span>4.</span><span><p>4. No biosynthesis of ascorbate from either <span>D</span>-[6-<sup>14</sup>C]glucuronate or <span>D</span>-[6-<sup>14</sup>C]-glucuronolactone could be demonstrated in incubated rabbit lens. However, there was conversion of the labeled carbon to CO<sub>2</sub> and some accumulation of labeled <span>L</span>-gulonate. Aldose reductase, although it reduces glucuronate to <span>L</span>-gulonate, does not appear to be involved in ascorbate biosynthesis.</p></span></li></ul></div>\",\"PeriodicalId\":100160,\"journal\":{\"name\":\"Biochimica et Biophysica Acta (BBA) - Enzymology and Biological Oxidation\",\"volume\":\"128 3\",\"pages\":\"Pages 474-482\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1966-12-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/0926-6593(66)90008-7\",\"citationCount\":\"80\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biochimica et Biophysica Acta (BBA) - Enzymology and Biological Oxidation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/0926659366900087\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochimica et Biophysica Acta (BBA) - Enzymology and Biological Oxidation","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/0926659366900087","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 80

摘要

1.1. 研究了其醛还原活性在家兔各脏器中的分布。虽然所有研究的器官都有能力使用NADPH作为木糖还原的辅助因子,但观察到的不同底物特异性表明,这种活性可能是由于至少存在两种不同的酶。晶体、肾上腺和骨骼肌中的醛糖还原酶(多元醇:NADP+氧化还原酶,EC 1.1.1.21)和肝脏、肾脏、心脏、脊髓和脑中的NADP+- l -己酸脱氢酶(l - gulate:NADP+氧化还原酶,EC 1.1.1.19)。将小牛晶体解剖成包膜(包括上皮)、皮质和细胞核三部分,测定提取液可溶性部分醛糖还原酶、半乳糖激酶(ATP: d -半乳糖1-磷酸转移酶,EC 2.7.1.6)和葡萄糖-6-磷酸脱氢酶(d -葡萄糖-6-磷酸:NADP+氧化还原酶,EC 1.1.1.49)的浓度。三种酶的分布规律不同:醛糖还原酶的皮质:上皮:细胞核的比值为1:21:1.1;半乳糖激酶为1:3:0.02,葡萄糖-6-磷酸脱氢酶为1:7:0.04。当小牛晶状体在含有半乳糖的培养基中孵育时,dulcitol的积累在上皮区域最多,在细胞核中最少,在皮层中有中等数量。D-[6-14C]-葡萄糖醛酸盐和D-[6-14C]-葡萄糖醛酸内酯在培养兔晶状体中均未合成抗坏血酸。然而,标记的碳转化为CO2,并积累了一些标记的l -谷氨酸盐。醛糖还原酶虽然能将葡萄糖醛酸还原为l -谷氨酸,但似乎不参与抗坏血酸的生物合成。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Aldose reductase activity in the lens and other tissues

  • 1.

    1. The distribution of aldose-reducing activities was studied in several rabbit organs. Although all the organs studied had the ability to use NADPH as a cofactor for the reduction of xylose, the different substrate specificities observed suggest that the activity may be due to the presence of at least two different enzymes. These were aldose reductase (polyol:NADP+ oxidoreductase, EC 1.1.1.21), in lens, adrenal and skeletal muscle and NADP+-L-hexonate dehydrogenase (L-gulonate:NADP+ oxidoreductase, EC 1.1.1.19) in liver, kidney, heart, spinal cord and brain.

  • 2.

    2. Calf lenses were dissected into three portions: capsule (including the epithelium), cortex and nucleus, and the concentrations of aldose reductase, galactokinase, (ATP:D-galactose 1-phosphotransferase, EC 2.7.1.6) and glucose-6-phosphate dehydrogenase (D-glucose-6-phosphate:NADP+ oxidoreductase, EC 1.1.1.49) were determined in the soluble fractions of the extracts. The distribution patterns were different for the three enzymesl the ratio cortex:epithelium:nucleus was 1:21:1.1 for aldose reductase; 1:3:0.02 for galactokinase and 1:7:0.04 for glucose-6-phosphate dehydrogenase.

  • 3.

    3. When calf lenses were incubated in media containing galactose, the accumulation of dulcitol was greatest in the epithelial region and least in the nucleus with an intermediate amount in the cortex.

  • 4.

    4. No biosynthesis of ascorbate from either D-[6-14C]glucuronate or D-[6-14C]-glucuronolactone could be demonstrated in incubated rabbit lens. However, there was conversion of the labeled carbon to CO2 and some accumulation of labeled L-gulonate. Aldose reductase, although it reduces glucuronate to L-gulonate, does not appear to be involved in ascorbate biosynthesis.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Author index Subject index Insect extramitochondrial glycerophosphate dehydrogenase II. Enzymic properties and amino acid composition of the enzyme from honeybee (Apis mellifera) thoraces The inter-relationships of low redox potential cytochrome c552 and hydrogenase in facultative anaerobes The threonine-sensitive homoserine dehydrogenase and aspartokinase activities of Escherichia coli
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1