Manuel Keppler, Dominic Lakatos, C. Ott, A. Albu-Schäffer
{"title":"柔性驱动机器人弹性结构保持阻抗(ESπ)控制","authors":"Manuel Keppler, Dominic Lakatos, C. Ott, A. Albu-Schäffer","doi":"10.1109/IROS.2018.8593415","DOIUrl":null,"url":null,"abstract":"We present a new approach for Cartesian impedance control of compliantly actuated robots with possibly nonlinear spring characteristics. It reveals a remarkable stiffness and damping range in the experimental evaluation. The most interesting contribution, is the way the desired closed-loop dynamics is designed. Our control concept allows to add a desired stiffness and damping directly on the end-effector, while leaving the system structure intact. The intrinsic inertial and elastic properties of the system are preserved. This is achieved by introducing new motor coordinates that reflect the desired spring and damper terms. Theoretically, by means of additional motor inertia shaping it is possible to make the end-effector interaction behavior with respect to external loads approach, arbitrarily close, the interaction behavior that is achievable by classical Cartesian impedance control on rigid robots. The physically motivated design approach allows for an intuitive understanding of the resulting closed-loop dynamics. We perform a passivity and stability analysis on the basis of al physically motivated storage and Lyapunov function.","PeriodicalId":6640,"journal":{"name":"2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)","volume":"3 1","pages":"5861-5868"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Elastic Structure Preserving Impedance (ESπ)Control for Compliantly Actuated Robots\",\"authors\":\"Manuel Keppler, Dominic Lakatos, C. Ott, A. Albu-Schäffer\",\"doi\":\"10.1109/IROS.2018.8593415\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present a new approach for Cartesian impedance control of compliantly actuated robots with possibly nonlinear spring characteristics. It reveals a remarkable stiffness and damping range in the experimental evaluation. The most interesting contribution, is the way the desired closed-loop dynamics is designed. Our control concept allows to add a desired stiffness and damping directly on the end-effector, while leaving the system structure intact. The intrinsic inertial and elastic properties of the system are preserved. This is achieved by introducing new motor coordinates that reflect the desired spring and damper terms. Theoretically, by means of additional motor inertia shaping it is possible to make the end-effector interaction behavior with respect to external loads approach, arbitrarily close, the interaction behavior that is achievable by classical Cartesian impedance control on rigid robots. The physically motivated design approach allows for an intuitive understanding of the resulting closed-loop dynamics. We perform a passivity and stability analysis on the basis of al physically motivated storage and Lyapunov function.\",\"PeriodicalId\":6640,\"journal\":{\"name\":\"2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)\",\"volume\":\"3 1\",\"pages\":\"5861-5868\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IROS.2018.8593415\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IROS.2018.8593415","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Elastic Structure Preserving Impedance (ESπ)Control for Compliantly Actuated Robots
We present a new approach for Cartesian impedance control of compliantly actuated robots with possibly nonlinear spring characteristics. It reveals a remarkable stiffness and damping range in the experimental evaluation. The most interesting contribution, is the way the desired closed-loop dynamics is designed. Our control concept allows to add a desired stiffness and damping directly on the end-effector, while leaving the system structure intact. The intrinsic inertial and elastic properties of the system are preserved. This is achieved by introducing new motor coordinates that reflect the desired spring and damper terms. Theoretically, by means of additional motor inertia shaping it is possible to make the end-effector interaction behavior with respect to external loads approach, arbitrarily close, the interaction behavior that is achievable by classical Cartesian impedance control on rigid robots. The physically motivated design approach allows for an intuitive understanding of the resulting closed-loop dynamics. We perform a passivity and stability analysis on the basis of al physically motivated storage and Lyapunov function.