“一种尺寸不适合所有”:用于基于代理的模型敏感性分析的目的驱动混合方法路径的路线图

Arika Ligmann-Zielinska, Peer-Olaf Siebers, N. Magliocca, D. Parker, V. Grimm, Jing Du, M. Cenek, V. Radchuk, Nazia N. Arbab, Sheng Li, U. Berger, Rajiv Paudel, D. Robinson, P. Jankowski, Li An, X. Ye
{"title":"“一种尺寸不适合所有”:用于基于代理的模型敏感性分析的目的驱动混合方法路径的路线图","authors":"Arika Ligmann-Zielinska, Peer-Olaf Siebers, N. Magliocca, D. Parker, V. Grimm, Jing Du, M. Cenek, V. Radchuk, Nazia N. Arbab, Sheng Li, U. Berger, Rajiv Paudel, D. Robinson, P. Jankowski, Li An, X. Ye","doi":"10.18564/jasss.4201","DOIUrl":null,"url":null,"abstract":": Designing, implementing, and applying agent-based models (ABMs) requires a structured approach, part of which is a comprehensive analysis of the output to input variability in the form of uncertainty and sensitivity analysis (SA). The objective of this paper is to assist in choosing, for a given ABM, the most appropriate methods of SA. We argue that no single SA method fits all ABMs and that different methods of SA should be used based on the overarching purpose of the model. For example, abstract exploratory models that focus on deeper understanding of the target system and its properties are fed with only the most critical data representing patterns or stylized facts. For them, simple SA methods may be sufficient in capturing the dependencies between the output-input spaces. In contrast, applied models used in scenario and policy-analysis are usually more complex and data-rich because a higher level of realism is required. Here the choice of a more sophisticated SA may be critical in establishing the robustness of the results before the model (or its results) can be passed on to end-users. Accordingly, we present a roadmap that guides ABM developers through the process of performing SA that best fits the purpose of their ABM. This roadmap covers a wide range of ABM applications and advocates for the routine emerging in recent years: a) handling temporal and spatial outputs, b) using the whole output distribution of a result rather than its variance, c) looking at topological relationships between input data points rather than their values, and d) looking into the ABM black box âĂŞ– finding behavioral primitives and using them to study complex system characteristics like regime shifts, tipping points, and condensation versus dissipation of collective system behavior.","PeriodicalId":14675,"journal":{"name":"J. Artif. Soc. Soc. Simul.","volume":"41 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"35","resultStr":"{\"title\":\"'One Size Does Not Fit All': A Roadmap of Purpose-Driven Mixed-Method Pathways for Sensitivity Analysis of Agent-Based Models\",\"authors\":\"Arika Ligmann-Zielinska, Peer-Olaf Siebers, N. Magliocca, D. Parker, V. Grimm, Jing Du, M. Cenek, V. Radchuk, Nazia N. Arbab, Sheng Li, U. Berger, Rajiv Paudel, D. Robinson, P. Jankowski, Li An, X. Ye\",\"doi\":\"10.18564/jasss.4201\",\"DOIUrl\":null,\"url\":null,\"abstract\":\": Designing, implementing, and applying agent-based models (ABMs) requires a structured approach, part of which is a comprehensive analysis of the output to input variability in the form of uncertainty and sensitivity analysis (SA). The objective of this paper is to assist in choosing, for a given ABM, the most appropriate methods of SA. We argue that no single SA method fits all ABMs and that different methods of SA should be used based on the overarching purpose of the model. For example, abstract exploratory models that focus on deeper understanding of the target system and its properties are fed with only the most critical data representing patterns or stylized facts. For them, simple SA methods may be sufficient in capturing the dependencies between the output-input spaces. In contrast, applied models used in scenario and policy-analysis are usually more complex and data-rich because a higher level of realism is required. Here the choice of a more sophisticated SA may be critical in establishing the robustness of the results before the model (or its results) can be passed on to end-users. Accordingly, we present a roadmap that guides ABM developers through the process of performing SA that best fits the purpose of their ABM. This roadmap covers a wide range of ABM applications and advocates for the routine emerging in recent years: a) handling temporal and spatial outputs, b) using the whole output distribution of a result rather than its variance, c) looking at topological relationships between input data points rather than their values, and d) looking into the ABM black box âĂŞ– finding behavioral primitives and using them to study complex system characteristics like regime shifts, tipping points, and condensation versus dissipation of collective system behavior.\",\"PeriodicalId\":14675,\"journal\":{\"name\":\"J. Artif. Soc. Soc. Simul.\",\"volume\":\"41 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-01-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"35\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"J. Artif. Soc. Soc. Simul.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.18564/jasss.4201\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"J. Artif. Soc. Soc. Simul.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18564/jasss.4201","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 35

摘要

设计、实现和应用基于智能体的模型(ABMs)需要一种结构化的方法,其中一部分是以不确定性和敏感性分析(SA)的形式对输出到输入的可变性进行全面分析。本文的目的是帮助选择,对于给定的ABM,最合适的SA方法。我们认为,没有一种SA方法适合所有的abm,应该根据模型的总体目的使用不同的SA方法。例如,专注于对目标系统及其属性的更深层次理解的抽象探索性模型只使用表示模式或程式化事实的最关键数据。对他们来说,简单的SA方法可能足以捕获输出-输入空间之间的依赖关系。相比之下,在场景和策略分析中使用的应用模型通常更复杂,数据也更丰富,因为需要更高层次的现实性。在这里,在将模型(或其结果)传递给最终用户之前,选择更复杂的SA对于建立结果的健壮性可能至关重要。因此,我们提供了一个路线图,指导ABM开发人员执行最适合其ABM目的的SA的过程。该路线图涵盖了广泛的ABM应用,并倡导近年来出现的常规:a)处理时间和空间输出,b)使用结果的整个输出分布,而不是其方差,c)查看输入数据点之间的拓扑关系,而不是它们的值,d)查看ABM黑箱âĂŞ -找到行为原语并使用它们来研究复杂的系统特征,如状态转移,临界点,以及集体系统行为的凝结与消散。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
'One Size Does Not Fit All': A Roadmap of Purpose-Driven Mixed-Method Pathways for Sensitivity Analysis of Agent-Based Models
: Designing, implementing, and applying agent-based models (ABMs) requires a structured approach, part of which is a comprehensive analysis of the output to input variability in the form of uncertainty and sensitivity analysis (SA). The objective of this paper is to assist in choosing, for a given ABM, the most appropriate methods of SA. We argue that no single SA method fits all ABMs and that different methods of SA should be used based on the overarching purpose of the model. For example, abstract exploratory models that focus on deeper understanding of the target system and its properties are fed with only the most critical data representing patterns or stylized facts. For them, simple SA methods may be sufficient in capturing the dependencies between the output-input spaces. In contrast, applied models used in scenario and policy-analysis are usually more complex and data-rich because a higher level of realism is required. Here the choice of a more sophisticated SA may be critical in establishing the robustness of the results before the model (or its results) can be passed on to end-users. Accordingly, we present a roadmap that guides ABM developers through the process of performing SA that best fits the purpose of their ABM. This roadmap covers a wide range of ABM applications and advocates for the routine emerging in recent years: a) handling temporal and spatial outputs, b) using the whole output distribution of a result rather than its variance, c) looking at topological relationships between input data points rather than their values, and d) looking into the ABM black box âĂŞ– finding behavioral primitives and using them to study complex system characteristics like regime shifts, tipping points, and condensation versus dissipation of collective system behavior.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Conflicting Information and Compliance with COVID-19 Behavioral Recommendations Particle Swarm Optimization for Calibration in Spatially Explicit Agent-Based Modeling The Role of Reinforcement Learning in the Emergence of Conventions: Simulation Experiments with the Repeated Volunteer's Dilemma Generation of Synthetic Populations in Social Simulations: A Review of Methods and Practices An Integrated Ecological-Social Simulation Model of Farmer Decisions and Cropping System Performance in the Rolling Pampas (Argentina)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1