{"title":"一个高效的、无矩阵的高维偏微分方程有限元库","authors":"Peter Munch, K. Kormann, M. Kronbichler","doi":"10.1145/3469720","DOIUrl":null,"url":null,"abstract":"This work presents the efficient, matrix-free finite-element library hyper.deal for solving partial differential equations in two up to six dimensions with high-order discontinuous Galerkin methods. It builds upon the low-dimensional finite-element library deal.II to create complex low-dimensional meshes and to operate on them individually. These meshes are combined via a tensor product on the fly, and the library provides new special-purpose highly optimized matrix-free functions exploiting domain decomposition as well as shared memory via MPI-3.0 features. Both node-level performance analyses and strong/weak-scaling studies on up to 147,456 CPU cores confirm the efficiency of the implementation. Results obtained with the library hyper.deal are reported for high-dimensional advection problems and for the solution of the Vlasov–Poisson equation in up to six-dimensional phase space.","PeriodicalId":7036,"journal":{"name":"ACM Transactions on Mathematical Software (TOMS)","volume":"82 1","pages":"1 - 34"},"PeriodicalIF":0.0000,"publicationDate":"2020-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"hyper.deal: An Efficient, Matrix-free Finite-element Library for High-dimensional Partial Differential Equations\",\"authors\":\"Peter Munch, K. Kormann, M. Kronbichler\",\"doi\":\"10.1145/3469720\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This work presents the efficient, matrix-free finite-element library hyper.deal for solving partial differential equations in two up to six dimensions with high-order discontinuous Galerkin methods. It builds upon the low-dimensional finite-element library deal.II to create complex low-dimensional meshes and to operate on them individually. These meshes are combined via a tensor product on the fly, and the library provides new special-purpose highly optimized matrix-free functions exploiting domain decomposition as well as shared memory via MPI-3.0 features. Both node-level performance analyses and strong/weak-scaling studies on up to 147,456 CPU cores confirm the efficiency of the implementation. Results obtained with the library hyper.deal are reported for high-dimensional advection problems and for the solution of the Vlasov–Poisson equation in up to six-dimensional phase space.\",\"PeriodicalId\":7036,\"journal\":{\"name\":\"ACM Transactions on Mathematical Software (TOMS)\",\"volume\":\"82 1\",\"pages\":\"1 - 34\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-02-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Transactions on Mathematical Software (TOMS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3469720\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Mathematical Software (TOMS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3469720","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
hyper.deal: An Efficient, Matrix-free Finite-element Library for High-dimensional Partial Differential Equations
This work presents the efficient, matrix-free finite-element library hyper.deal for solving partial differential equations in two up to six dimensions with high-order discontinuous Galerkin methods. It builds upon the low-dimensional finite-element library deal.II to create complex low-dimensional meshes and to operate on them individually. These meshes are combined via a tensor product on the fly, and the library provides new special-purpose highly optimized matrix-free functions exploiting domain decomposition as well as shared memory via MPI-3.0 features. Both node-level performance analyses and strong/weak-scaling studies on up to 147,456 CPU cores confirm the efficiency of the implementation. Results obtained with the library hyper.deal are reported for high-dimensional advection problems and for the solution of the Vlasov–Poisson equation in up to six-dimensional phase space.