{"title":"醛糖与溴的氧化","authors":"H. Isbell","doi":"10.6028/jres.066A.023","DOIUrl":null,"url":null,"abstract":"Rates of oxidation of aldoses with bromine have been reappraised and interpreted in the light of present concepts of conformation and reaction mechanism. It is suggested that differences in the rates of oxidation of the α and β anomers are largely determined by differences in the free energy required by the reactants for passing from the ground state to the complex in the transition state. Structures for the aldoses in the ground states and in the transition states are postulated, and factors affecting the energy required for reaching the transition states from the ground states are discussed. The relative rates of oxidation are in accordance with the hypothesis that each of the aldoses in the ground state has the conformation predicted by Reeves, and, in the transition state, has a conformation in which the oxygen atom of the C1-hydroxyl group lies in the plane formed by the ring oxygen atom, C1, C2, and C5. Presumably, this conformation is stabilized by resonance involving the oxygen atom of the ring. For aldoses having high stability in one chair conformation, the rates of oxidation of the anomers differ widely; in each instance, the anomer in which the C1-hydroxyl group is axial is oxidized more slowly than the anomer in which this group is equatorial. For aldoses having less stability in a chair conformation, the rates of oxidation of the anomers differ less widely, but, nevertheless, show a definite correlation with the angular position of the C1-hydroxyl group relative to the plane of the ring. For aldoses for which the stability in both chair conformations is so low that they probably exist in a variety of conformations, the rates of oxidation of the anomers show little difference and no particular correlation with the angular position of the C1-hydroxyl group. The presence or absence of an oxygen atom in the ring is used to account for the large differences between the rates of bromine oxidation of the aldoses and those of derivatives of cyclohexanol. Differences in conformation in the transition state, associated with the presence or absence of this oxygen atom, likewise account for the fact that the relative rates of oxidation of the axial and equatorial isomers in the two classes of compound are reversed. Because of uncertainty as to the anomeric configurations commonly assigned to some of the aldoses, the configurations of 22 aldoses were reappraised. Advantage was taken of the principle that the anomer preponderating in the equilibrium solution has trans hydroxyl groups at C1 and C2. Except for crystalline d-glycero-d-ido-heptose, the assignments of configuration based on this principle agree with the configurations generally accepted. Classification of crystalline d-glycero-d-ido-heptose as an α-d-pyranose necessitates correction of earlier records in which this sugar was considered to be a β-d-pyranose. In accordance with the author’s earlier formulation, oxidation of the axial anomer is believed to take place by two courses: (1) direct oxidation and (2) conversion to the equatorial anomer by the anomerization reaction and the subsequent oxidation of this anomer. The relative importance of the two courses is not considered in this paper. It is pointed out, however, that the actual difference in the rates for the direct oxidation of the two anomers must be at least as great as that observed for the overall rates of oxidation.","PeriodicalId":94340,"journal":{"name":"Journal of research of the National Bureau of Standards. Section A, Physics and chemistry","volume":"61 1","pages":"233 - 239"},"PeriodicalIF":0.0000,"publicationDate":"1962-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":"{\"title\":\"Oxidation of Aldoses With Bromine\",\"authors\":\"H. Isbell\",\"doi\":\"10.6028/jres.066A.023\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Rates of oxidation of aldoses with bromine have been reappraised and interpreted in the light of present concepts of conformation and reaction mechanism. It is suggested that differences in the rates of oxidation of the α and β anomers are largely determined by differences in the free energy required by the reactants for passing from the ground state to the complex in the transition state. Structures for the aldoses in the ground states and in the transition states are postulated, and factors affecting the energy required for reaching the transition states from the ground states are discussed. The relative rates of oxidation are in accordance with the hypothesis that each of the aldoses in the ground state has the conformation predicted by Reeves, and, in the transition state, has a conformation in which the oxygen atom of the C1-hydroxyl group lies in the plane formed by the ring oxygen atom, C1, C2, and C5. Presumably, this conformation is stabilized by resonance involving the oxygen atom of the ring. For aldoses having high stability in one chair conformation, the rates of oxidation of the anomers differ widely; in each instance, the anomer in which the C1-hydroxyl group is axial is oxidized more slowly than the anomer in which this group is equatorial. For aldoses having less stability in a chair conformation, the rates of oxidation of the anomers differ less widely, but, nevertheless, show a definite correlation with the angular position of the C1-hydroxyl group relative to the plane of the ring. For aldoses for which the stability in both chair conformations is so low that they probably exist in a variety of conformations, the rates of oxidation of the anomers show little difference and no particular correlation with the angular position of the C1-hydroxyl group. The presence or absence of an oxygen atom in the ring is used to account for the large differences between the rates of bromine oxidation of the aldoses and those of derivatives of cyclohexanol. Differences in conformation in the transition state, associated with the presence or absence of this oxygen atom, likewise account for the fact that the relative rates of oxidation of the axial and equatorial isomers in the two classes of compound are reversed. Because of uncertainty as to the anomeric configurations commonly assigned to some of the aldoses, the configurations of 22 aldoses were reappraised. Advantage was taken of the principle that the anomer preponderating in the equilibrium solution has trans hydroxyl groups at C1 and C2. Except for crystalline d-glycero-d-ido-heptose, the assignments of configuration based on this principle agree with the configurations generally accepted. Classification of crystalline d-glycero-d-ido-heptose as an α-d-pyranose necessitates correction of earlier records in which this sugar was considered to be a β-d-pyranose. In accordance with the author’s earlier formulation, oxidation of the axial anomer is believed to take place by two courses: (1) direct oxidation and (2) conversion to the equatorial anomer by the anomerization reaction and the subsequent oxidation of this anomer. The relative importance of the two courses is not considered in this paper. It is pointed out, however, that the actual difference in the rates for the direct oxidation of the two anomers must be at least as great as that observed for the overall rates of oxidation.\",\"PeriodicalId\":94340,\"journal\":{\"name\":\"Journal of research of the National Bureau of Standards. Section A, Physics and chemistry\",\"volume\":\"61 1\",\"pages\":\"233 - 239\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1962-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"17\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of research of the National Bureau of Standards. Section A, Physics and chemistry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.6028/jres.066A.023\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of research of the National Bureau of Standards. Section A, Physics and chemistry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.6028/jres.066A.023","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 17

摘要

根据现有的构象和反应机理的概念,对醛糖与溴的氧化速率进行了重新评价和解释。α和β异头物氧化速率的差异很大程度上是由反应物从基态过渡到过渡态络合物所需自由能的差异决定的。假设了醛糖在基态和过渡态的结构,并讨论了影响从基态到达过渡态所需能量的因素。相对氧化速率符合假设,即基态的醛糖具有Reeves预测的构象,过渡态的醛糖具有C1-羟基的氧原子位于环状氧原子C1、C2和C5形成的平面上的构象。据推测,这种构象是通过涉及环上氧原子的共振而稳定下来的。对于单椅构象稳定性高的醛糖,其异头物的氧化速率差别很大;在每种情况下,c1 -羟基为轴向的异头化合物比c1 -羟基为平伏的异头化合物氧化得慢。对于椅形构象稳定性较差的醛糖,异头化合物的氧化速率差异较小,但与c1 -羟基相对于环平面的角度位置有明确的相关性。对于两种椅子构象的稳定性都很低的醛糖,它们可能存在于各种构象中,它们的氧化速率与c1 -羟基的角度位置没有特别的相关性。环中氧原子的存在与否被用来解释醛糖和环己醇衍生物的溴氧化速率之间的巨大差异。过渡态构象的不同,与这个氧原子的存在与否有关,同样也说明了这两类化合物的轴向和赤道异构体的相对氧化速率是相反的。由于某些醛糖通常具有不确定的端粒构型,对22种醛糖的构型进行了重新评价。利用平衡溶液中占优势的异头物在C1和C2上有反式羟基的原理。除了结晶的d-甘油-d-ido-庚糖外,基于这一原理的构型分配与普遍接受的构型一致。将结晶d-甘油-d-ido-庚糖分类为α-d-吡喃糖,需要纠正早期将这种糖视为β-d-吡喃糖的记录。根据作者先前的公式,轴向异头化合物的氧化可经过两个过程:(1)直接氧化和(2)异头化合物通过异异构反应转化为赤道异头化合物,并随后对其进行氧化。本文没有考虑这两门课程的相对重要性。然而,应当指出,这两种异头化合物的直接氧化速率的实际差异必须至少与所观察到的总氧化速率的差异一样大。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Oxidation of Aldoses With Bromine
Rates of oxidation of aldoses with bromine have been reappraised and interpreted in the light of present concepts of conformation and reaction mechanism. It is suggested that differences in the rates of oxidation of the α and β anomers are largely determined by differences in the free energy required by the reactants for passing from the ground state to the complex in the transition state. Structures for the aldoses in the ground states and in the transition states are postulated, and factors affecting the energy required for reaching the transition states from the ground states are discussed. The relative rates of oxidation are in accordance with the hypothesis that each of the aldoses in the ground state has the conformation predicted by Reeves, and, in the transition state, has a conformation in which the oxygen atom of the C1-hydroxyl group lies in the plane formed by the ring oxygen atom, C1, C2, and C5. Presumably, this conformation is stabilized by resonance involving the oxygen atom of the ring. For aldoses having high stability in one chair conformation, the rates of oxidation of the anomers differ widely; in each instance, the anomer in which the C1-hydroxyl group is axial is oxidized more slowly than the anomer in which this group is equatorial. For aldoses having less stability in a chair conformation, the rates of oxidation of the anomers differ less widely, but, nevertheless, show a definite correlation with the angular position of the C1-hydroxyl group relative to the plane of the ring. For aldoses for which the stability in both chair conformations is so low that they probably exist in a variety of conformations, the rates of oxidation of the anomers show little difference and no particular correlation with the angular position of the C1-hydroxyl group. The presence or absence of an oxygen atom in the ring is used to account for the large differences between the rates of bromine oxidation of the aldoses and those of derivatives of cyclohexanol. Differences in conformation in the transition state, associated with the presence or absence of this oxygen atom, likewise account for the fact that the relative rates of oxidation of the axial and equatorial isomers in the two classes of compound are reversed. Because of uncertainty as to the anomeric configurations commonly assigned to some of the aldoses, the configurations of 22 aldoses were reappraised. Advantage was taken of the principle that the anomer preponderating in the equilibrium solution has trans hydroxyl groups at C1 and C2. Except for crystalline d-glycero-d-ido-heptose, the assignments of configuration based on this principle agree with the configurations generally accepted. Classification of crystalline d-glycero-d-ido-heptose as an α-d-pyranose necessitates correction of earlier records in which this sugar was considered to be a β-d-pyranose. In accordance with the author’s earlier formulation, oxidation of the axial anomer is believed to take place by two courses: (1) direct oxidation and (2) conversion to the equatorial anomer by the anomerization reaction and the subsequent oxidation of this anomer. The relative importance of the two courses is not considered in this paper. It is pointed out, however, that the actual difference in the rates for the direct oxidation of the two anomers must be at least as great as that observed for the overall rates of oxidation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Thermophysical Measurements on 90Ti-6AI-4V Alloy Above 1450 K Using a Transient (Subsecond) Technique Solubility of Ca5(PO4)3OH in the System Ca(OH)2-H3PO4-H2O at 5, 15, 25, and 37 °C Thermodynamics of the Densification Process for Polymer Glasses Isotope Effects in the Association Reactions of Methyl and Ethyl Iodide Cations Evaporation of a Liquid Droplet
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1