Rafika Dwi Cahyani, A. Z. Mustopa, Rifqiyah Nur Umami, Moh Egy Rahman Firdaus, A. B. Manguntungi, A. Arwansyah
{"title":"乳酸乳球菌次级代谢物筛选环氧合酶-2抑制剂的分子对接分析lactis (Lac3)","authors":"Rafika Dwi Cahyani, A. Z. Mustopa, Rifqiyah Nur Umami, Moh Egy Rahman Firdaus, A. B. Manguntungi, A. Arwansyah","doi":"10.56899/152.04.04","DOIUrl":null,"url":null,"abstract":"Inflammatory response plays important roles in both tumorigenesis and carcinogenesis. In this study, secondary metabolite compounds from Lactococcus lactis subsp. lactis (Lac3) were analyzed by LC-MS and the potential inhibition activity against the COX-2 receptor was screened through molecular docking and molecular dynamics (MD) analysis. Anti-inflammatory agents, mofezolac and ibuprofen, were used as positive control ligands. The result indicates a potential COX-2 inhibitor of 5-[(4-Amino-6-morpholin-4-yl-1,3,5-triazin-2-yl)amino]-2- methylbenzenesulfonate, which has a hydrogen bond on the active site Tyr385 of COX-2 with affinity energy of –9.0 kcal/mol. Moreover, another candidate of COX-2 inhibitor, designated as 3-Indolepropionic acid binds hydrogen on the important residue Ser530 of COX-2, with an affinity energy of –6.9 kcal/mol. To confirm the binding specificity, molecular docking analysis was also performed against COX-1. The binding stability and flexibility were confirmed using MD simulations. In addition, the toxicity and solubility of the potential ligands were predicted according to Lipinski’s rules and BOILED-Egg modeling. The 5-[(4-Amino-6-morpholin-4-yl- 1,3,5-triazin-2-yl)amino]-2-methylbenzenesulfonate shows the propensity for passive absorption through the gastrointestinal tract, whereas 3-Indolepropionic acid shows a high probability of blood-brain barrier penetration. In conclusion, this study identified potential compounds through molecular docking analysis which can be developed as COX-2 inhibitors.","PeriodicalId":39096,"journal":{"name":"Philippine Journal of Science","volume":"2 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Molecular Docking Analysis for Screening of Cyclooxygenase-2 Inhibitors from Secondary Metabolite Compounds of Lactococcus lactis subsp. lactis (Lac3)\",\"authors\":\"Rafika Dwi Cahyani, A. Z. Mustopa, Rifqiyah Nur Umami, Moh Egy Rahman Firdaus, A. B. Manguntungi, A. Arwansyah\",\"doi\":\"10.56899/152.04.04\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Inflammatory response plays important roles in both tumorigenesis and carcinogenesis. In this study, secondary metabolite compounds from Lactococcus lactis subsp. lactis (Lac3) were analyzed by LC-MS and the potential inhibition activity against the COX-2 receptor was screened through molecular docking and molecular dynamics (MD) analysis. Anti-inflammatory agents, mofezolac and ibuprofen, were used as positive control ligands. The result indicates a potential COX-2 inhibitor of 5-[(4-Amino-6-morpholin-4-yl-1,3,5-triazin-2-yl)amino]-2- methylbenzenesulfonate, which has a hydrogen bond on the active site Tyr385 of COX-2 with affinity energy of –9.0 kcal/mol. Moreover, another candidate of COX-2 inhibitor, designated as 3-Indolepropionic acid binds hydrogen on the important residue Ser530 of COX-2, with an affinity energy of –6.9 kcal/mol. To confirm the binding specificity, molecular docking analysis was also performed against COX-1. The binding stability and flexibility were confirmed using MD simulations. In addition, the toxicity and solubility of the potential ligands were predicted according to Lipinski’s rules and BOILED-Egg modeling. The 5-[(4-Amino-6-morpholin-4-yl- 1,3,5-triazin-2-yl)amino]-2-methylbenzenesulfonate shows the propensity for passive absorption through the gastrointestinal tract, whereas 3-Indolepropionic acid shows a high probability of blood-brain barrier penetration. In conclusion, this study identified potential compounds through molecular docking analysis which can be developed as COX-2 inhibitors.\",\"PeriodicalId\":39096,\"journal\":{\"name\":\"Philippine Journal of Science\",\"volume\":\"2 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-05-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Philippine Journal of Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.56899/152.04.04\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Multidisciplinary\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Philippine Journal of Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.56899/152.04.04","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Multidisciplinary","Score":null,"Total":0}
Molecular Docking Analysis for Screening of Cyclooxygenase-2 Inhibitors from Secondary Metabolite Compounds of Lactococcus lactis subsp. lactis (Lac3)
Inflammatory response plays important roles in both tumorigenesis and carcinogenesis. In this study, secondary metabolite compounds from Lactococcus lactis subsp. lactis (Lac3) were analyzed by LC-MS and the potential inhibition activity against the COX-2 receptor was screened through molecular docking and molecular dynamics (MD) analysis. Anti-inflammatory agents, mofezolac and ibuprofen, were used as positive control ligands. The result indicates a potential COX-2 inhibitor of 5-[(4-Amino-6-morpholin-4-yl-1,3,5-triazin-2-yl)amino]-2- methylbenzenesulfonate, which has a hydrogen bond on the active site Tyr385 of COX-2 with affinity energy of –9.0 kcal/mol. Moreover, another candidate of COX-2 inhibitor, designated as 3-Indolepropionic acid binds hydrogen on the important residue Ser530 of COX-2, with an affinity energy of –6.9 kcal/mol. To confirm the binding specificity, molecular docking analysis was also performed against COX-1. The binding stability and flexibility were confirmed using MD simulations. In addition, the toxicity and solubility of the potential ligands were predicted according to Lipinski’s rules and BOILED-Egg modeling. The 5-[(4-Amino-6-morpholin-4-yl- 1,3,5-triazin-2-yl)amino]-2-methylbenzenesulfonate shows the propensity for passive absorption through the gastrointestinal tract, whereas 3-Indolepropionic acid shows a high probability of blood-brain barrier penetration. In conclusion, this study identified potential compounds through molecular docking analysis which can be developed as COX-2 inhibitors.