结构矩阵摄动压缩感知中的稳定信号恢复

Zai Yang, Cisheng Zhang, Lihua Xie
{"title":"结构矩阵摄动压缩感知中的稳定信号恢复","authors":"Zai Yang, Cisheng Zhang, Lihua Xie","doi":"10.1109/ICASSP.2012.6288483","DOIUrl":null,"url":null,"abstract":"The sparse signal recovery in standard compressed sensing (CS) requires that the sensing matrix is exactly known. The CS problem subject to perturbation in the sensing matrix is often encountered in practice and has attracted interest of researches. Unlike existing robust signal recoveries with the recovery error growing linearly with the perturbation level, this paper analyzes the CS problem subject to a structured perturbation to provide conditions for stable signal recovery under measurement noise. Under mild conditions on the perturbed sensing matrix, similar to that for the standard CS, it is shown that a sparse signal can be stably recovered by ℓ1 minimization. A remarkable result is that the recovery is exact and independent of the perturbation if there is no measurement noise and the signal is sufficiently sparse. In the presence of noise, largest entries (in magnitude) of a compressible signal can be stably recovered. The result is demonstrated by a simulation example.","PeriodicalId":6443,"journal":{"name":"2012 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2012-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Stable signal recovery in compressed sensing with a structured matrix perturbation\",\"authors\":\"Zai Yang, Cisheng Zhang, Lihua Xie\",\"doi\":\"10.1109/ICASSP.2012.6288483\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The sparse signal recovery in standard compressed sensing (CS) requires that the sensing matrix is exactly known. The CS problem subject to perturbation in the sensing matrix is often encountered in practice and has attracted interest of researches. Unlike existing robust signal recoveries with the recovery error growing linearly with the perturbation level, this paper analyzes the CS problem subject to a structured perturbation to provide conditions for stable signal recovery under measurement noise. Under mild conditions on the perturbed sensing matrix, similar to that for the standard CS, it is shown that a sparse signal can be stably recovered by ℓ1 minimization. A remarkable result is that the recovery is exact and independent of the perturbation if there is no measurement noise and the signal is sufficiently sparse. In the presence of noise, largest entries (in magnitude) of a compressible signal can be stably recovered. The result is demonstrated by a simulation example.\",\"PeriodicalId\":6443,\"journal\":{\"name\":\"2012 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-08-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICASSP.2012.6288483\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICASSP.2012.6288483","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

标准压缩感知(CS)中的稀疏信号恢复要求感知矩阵准确已知。传感矩阵中受扰动影响的CS问题在实践中经常遇到,并引起了人们的研究兴趣。与现有的恢复误差随扰动水平线性增长的鲁棒信号恢复不同,本文分析了受结构化扰动的CS问题,为测量噪声下的稳定信号恢复提供了条件。在类似于标准CS的轻微扰动条件下,证明了通过最小化可以稳定地恢复稀疏信号。一个显著的结果是,如果没有测量噪声,信号足够稀疏,恢复是准确的,不受扰动的影响。在噪声存在的情况下,可以稳定地恢复可压缩信号的最大分量(大小)。通过仿真算例验证了结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Stable signal recovery in compressed sensing with a structured matrix perturbation
The sparse signal recovery in standard compressed sensing (CS) requires that the sensing matrix is exactly known. The CS problem subject to perturbation in the sensing matrix is often encountered in practice and has attracted interest of researches. Unlike existing robust signal recoveries with the recovery error growing linearly with the perturbation level, this paper analyzes the CS problem subject to a structured perturbation to provide conditions for stable signal recovery under measurement noise. Under mild conditions on the perturbed sensing matrix, similar to that for the standard CS, it is shown that a sparse signal can be stably recovered by ℓ1 minimization. A remarkable result is that the recovery is exact and independent of the perturbation if there is no measurement noise and the signal is sufficiently sparse. In the presence of noise, largest entries (in magnitude) of a compressible signal can be stably recovered. The result is demonstrated by a simulation example.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Scalable Multilevel Quantization for Distributed Detection Linear Model-Based Intra Prediction in VVC Test Model Practical Concentric Open Sphere Cardioid Microphone Array Design for Higher Order Sound Field Capture Embedding Physical Augmentation and Wavelet Scattering Transform to Generative Adversarial Networks for Audio Classification with Limited Training Resources Improving ASR Robustness to Perturbed Speech Using Cycle-consistent Generative Adversarial Networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1