基于词典信息和文本局部特征的命名实体识别方法

IF 1 4区 工程技术 Q3 ENGINEERING, MULTIDISCIPLINARY Tehnicki Vjesnik-Technical Gazette Pub Date : 2023-06-15 DOI:10.17559/tv-20230121000257
Yuekun Ma, He Liu, Dezheng Zhang, Chang Gao, Yujue Liu, Yujie Liu
{"title":"基于词典信息和文本局部特征的命名实体识别方法","authors":"Yuekun Ma, He Liu, Dezheng Zhang, Chang Gao, Yujue Liu, Yujie Liu","doi":"10.17559/tv-20230121000257","DOIUrl":null,"url":null,"abstract":": At present, Named Entity Recognition (NER) is one of the fundamental tasks for extracting knowledge from traditional Chinese medicine (TCM) texts. The variability of the length of TCM entities and the characteristics of the language of TCM texts lead to ambiguity of TCM entity boundaries. In addition, better extracting and exploiting local features of text can improve the accuracy of named entity recognition. In this paper, we proposed a TCM NER model with lexicon information and text local feature enhancement of text. In this model, a lexicon is introduced to encode the characters in the text to obtain the context-sensitive global semantic representation of the text. The convolutional neural network (CNN) and gate joined collaborative attention network are used to form a text local feature extraction module to capture the important semantic features of local text. Experiments were conducted on two TCM domain datasets and the F 1 values are 91.13% and 90.21% respectively.","PeriodicalId":49443,"journal":{"name":"Tehnicki Vjesnik-Technical Gazette","volume":"37 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2023-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Named Entity Recognition Method Enhanced with Lexicon Information and Text Local Feature\",\"authors\":\"Yuekun Ma, He Liu, Dezheng Zhang, Chang Gao, Yujue Liu, Yujie Liu\",\"doi\":\"10.17559/tv-20230121000257\",\"DOIUrl\":null,\"url\":null,\"abstract\":\": At present, Named Entity Recognition (NER) is one of the fundamental tasks for extracting knowledge from traditional Chinese medicine (TCM) texts. The variability of the length of TCM entities and the characteristics of the language of TCM texts lead to ambiguity of TCM entity boundaries. In addition, better extracting and exploiting local features of text can improve the accuracy of named entity recognition. In this paper, we proposed a TCM NER model with lexicon information and text local feature enhancement of text. In this model, a lexicon is introduced to encode the characters in the text to obtain the context-sensitive global semantic representation of the text. The convolutional neural network (CNN) and gate joined collaborative attention network are used to form a text local feature extraction module to capture the important semantic features of local text. Experiments were conducted on two TCM domain datasets and the F 1 values are 91.13% and 90.21% respectively.\",\"PeriodicalId\":49443,\"journal\":{\"name\":\"Tehnicki Vjesnik-Technical Gazette\",\"volume\":\"37 1\",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2023-06-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Tehnicki Vjesnik-Technical Gazette\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.17559/tv-20230121000257\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tehnicki Vjesnik-Technical Gazette","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.17559/tv-20230121000257","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

命名实体识别(NER)是目前中医文本知识提取的基础任务之一。中医实体长度的多变性和中医文本语言的特点导致了中医实体边界的模糊性。此外,更好地提取和利用文本的局部特征可以提高命名实体识别的准确性。本文提出了一种具有词汇信息和文本局部特征增强的中医NER模型。在该模型中,引入词汇对文本中的字符进行编码,以获得文本的上下文敏感的全局语义表示。采用卷积神经网络(CNN)和门连接协同关注网络组成文本局部特征提取模块,捕捉局部文本的重要语义特征。在两个TCM域数据集上进行实验,f1值分别为91.13%和90.21%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Named Entity Recognition Method Enhanced with Lexicon Information and Text Local Feature
: At present, Named Entity Recognition (NER) is one of the fundamental tasks for extracting knowledge from traditional Chinese medicine (TCM) texts. The variability of the length of TCM entities and the characteristics of the language of TCM texts lead to ambiguity of TCM entity boundaries. In addition, better extracting and exploiting local features of text can improve the accuracy of named entity recognition. In this paper, we proposed a TCM NER model with lexicon information and text local feature enhancement of text. In this model, a lexicon is introduced to encode the characters in the text to obtain the context-sensitive global semantic representation of the text. The convolutional neural network (CNN) and gate joined collaborative attention network are used to form a text local feature extraction module to capture the important semantic features of local text. Experiments were conducted on two TCM domain datasets and the F 1 values are 91.13% and 90.21% respectively.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Tehnicki Vjesnik-Technical Gazette
Tehnicki Vjesnik-Technical Gazette ENGINEERING, MULTIDISCIPLINARY-
CiteScore
1.90
自引率
11.10%
发文量
270
审稿时长
12.6 months
期刊介绍: The journal TEHNIČKI VJESNIK - TECHNICAL GAZETTE publishes scientific and professional papers in the area of technical sciences (mostly from mechanical, electrical and civil engineering, and also from their boundary areas). All articles have undergone peer review and upon acceptance are permanently free of all restrictions on access, for everyone to read and download. For all articles authors will be asked to pay a publication fee prior to the article appearing in the journal. However, this fee only to be paid after the article has been positively reviewed and accepted for publishing. All details can be seen at http://www.tehnicki-vjesnik.com/web/public/page First year of publication: 1994 Frequency (annually): 6
期刊最新文献
A Method for Automatically Generating Join Queries Based on Relations-Attributes Distance Matrix over Data Lakes Seagull Optimization-based Feature Selection with Optimal Extreme Learning Machine for Intrusion Detection in Fog Assisted WSN Design of Single-phase PWM Rectifier Based on PI Double-loop Control Integrated Sensor Fusion Device with an Optimized Mathematical Model to Monitor Civil Engineering Structures Analysis of the Research Trend of Global Value Chain Based on Literature Metrology and Visualization Technology
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1