大型运动数据库中的高效运动检索

Mubbasir Kapadia, I-Kao Chiang, Tiju Thomas, N. Badler, Joseph T. Kider
{"title":"大型运动数据库中的高效运动检索","authors":"Mubbasir Kapadia, I-Kao Chiang, Tiju Thomas, N. Badler, Joseph T. Kider","doi":"10.1145/2448196.2448199","DOIUrl":null,"url":null,"abstract":"There has been a recent paradigm shift in the computer animation industry with an increasing use of pre-recorded motion for animating virtual characters. A fundamental requirement to using motion capture data is an efficient method for indexing and retrieving motions. In this paper, we propose a flexible, efficient method for searching arbitrarily complex motions in large motion databases. Motions are encoded using keys which represent a wide array of structural, geometric and, dynamic features of human motion. Keys provide a representative search space for indexing motions and users can specify sequences of key values as well as multiple combination of key sequences to search for complex motions. We use a trie-based data structure to provide an efficient mapping from key sequences to motions. The search times (even on a single CPU) are very fast, opening the possibility of using large motion data sets in real-time applications.","PeriodicalId":91160,"journal":{"name":"Proceedings. ACM SIGGRAPH Symposium on Interactive 3D Graphics and Games","volume":"29 1","pages":"19-28"},"PeriodicalIF":0.0000,"publicationDate":"2013-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"118","resultStr":"{\"title\":\"Efficient motion retrieval in large motion databases\",\"authors\":\"Mubbasir Kapadia, I-Kao Chiang, Tiju Thomas, N. Badler, Joseph T. Kider\",\"doi\":\"10.1145/2448196.2448199\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"There has been a recent paradigm shift in the computer animation industry with an increasing use of pre-recorded motion for animating virtual characters. A fundamental requirement to using motion capture data is an efficient method for indexing and retrieving motions. In this paper, we propose a flexible, efficient method for searching arbitrarily complex motions in large motion databases. Motions are encoded using keys which represent a wide array of structural, geometric and, dynamic features of human motion. Keys provide a representative search space for indexing motions and users can specify sequences of key values as well as multiple combination of key sequences to search for complex motions. We use a trie-based data structure to provide an efficient mapping from key sequences to motions. The search times (even on a single CPU) are very fast, opening the possibility of using large motion data sets in real-time applications.\",\"PeriodicalId\":91160,\"journal\":{\"name\":\"Proceedings. ACM SIGGRAPH Symposium on Interactive 3D Graphics and Games\",\"volume\":\"29 1\",\"pages\":\"19-28\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-03-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"118\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings. ACM SIGGRAPH Symposium on Interactive 3D Graphics and Games\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2448196.2448199\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. ACM SIGGRAPH Symposium on Interactive 3D Graphics and Games","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2448196.2448199","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 118

摘要

最近,计算机动画行业出现了一种范式转变,即越来越多地使用预先录制的动作来制作虚拟角色动画。使用动作捕捉数据的一个基本要求是一种有效的索引和检索动作的方法。本文提出了一种在大型运动数据库中搜索任意复杂运动的灵活、高效的方法。运动是用键来编码的,这些键代表了人体运动的各种结构、几何和动态特征。键为索引运动提供了一个有代表性的搜索空间,用户可以指定键值序列以及键序列的多个组合来搜索复杂的运动。我们使用基于尝试的数据结构来提供从关键序列到运动的有效映射。搜索时间(即使在单个CPU上)非常快,这使得在实时应用程序中使用大型运动数据集成为可能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Efficient motion retrieval in large motion databases
There has been a recent paradigm shift in the computer animation industry with an increasing use of pre-recorded motion for animating virtual characters. A fundamental requirement to using motion capture data is an efficient method for indexing and retrieving motions. In this paper, we propose a flexible, efficient method for searching arbitrarily complex motions in large motion databases. Motions are encoded using keys which represent a wide array of structural, geometric and, dynamic features of human motion. Keys provide a representative search space for indexing motions and users can specify sequences of key values as well as multiple combination of key sequences to search for complex motions. We use a trie-based data structure to provide an efficient mapping from key sequences to motions. The search times (even on a single CPU) are very fast, opening the possibility of using large motion data sets in real-time applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Interactive Inverse Spatio-Temporal Crowd Motion Design User-guided 3D reconstruction using multi-view stereo DenseGATs: A Graph-Attention-Based Network for Nonlinear Character Deformation RANDM: Random Access Depth Map Compression Using Range-Partitioning and Global Dictionary The Effect of Lighting, Landmarks and Auditory Cues on Human Performance in Navigating a Virtual Maze
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1