{"title":"具有改良形态和润湿性排列的表面:沙漠化地区集水的潜在介质","authors":"Tongqian Zhang, Yan Xi, Han Wang, Z. Zhang","doi":"10.2166/ws.2023.187","DOIUrl":null,"url":null,"abstract":"\n \n The cost of water transport for irrigating drought-endurable plants in desertification areas makes it important to develop other water sources. Research shows that freshwater produced by dewing could satisfy the water requirement during germination of desert plants, therefore, functional materials that promote dew formation provide solutions for reduction of plant irrigation costs in arid or semi-arid regions. In this review, feasibility of utilizing trace irrigation for ensuring survival of desert plants has been demonstrated. The technologies of preparing water harvesting materials with modified microstructure and wettability arrangement have been introduced, it has been shown that surface embedded with a bump array which has counter wettability compared with its plane section is a common morphology adopted by current works. After comparing climates in desertification regions with those in dewing chambers, it has been found that currently, the expected values of dew productivities of most water harvesting materials in deserted areas will not be as efficient as they performed in experiments due to low relative humidity. However, hydrophobic surface with submicron scale hydrophilic spherical cavity array produced by nanosphere lithography has shown reliable prospects in reducing the energy barrier of heterogeneous nucleation and thus become a more potential medium in dew water production.","PeriodicalId":17553,"journal":{"name":"Journal of Water Supply Research and Technology-aqua","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2023-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Surfaces with modified morphology and wettability arrangement: a potential medium for water harvesting in desertification areas\",\"authors\":\"Tongqian Zhang, Yan Xi, Han Wang, Z. Zhang\",\"doi\":\"10.2166/ws.2023.187\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n \\n The cost of water transport for irrigating drought-endurable plants in desertification areas makes it important to develop other water sources. Research shows that freshwater produced by dewing could satisfy the water requirement during germination of desert plants, therefore, functional materials that promote dew formation provide solutions for reduction of plant irrigation costs in arid or semi-arid regions. In this review, feasibility of utilizing trace irrigation for ensuring survival of desert plants has been demonstrated. The technologies of preparing water harvesting materials with modified microstructure and wettability arrangement have been introduced, it has been shown that surface embedded with a bump array which has counter wettability compared with its plane section is a common morphology adopted by current works. After comparing climates in desertification regions with those in dewing chambers, it has been found that currently, the expected values of dew productivities of most water harvesting materials in deserted areas will not be as efficient as they performed in experiments due to low relative humidity. However, hydrophobic surface with submicron scale hydrophilic spherical cavity array produced by nanosphere lithography has shown reliable prospects in reducing the energy barrier of heterogeneous nucleation and thus become a more potential medium in dew water production.\",\"PeriodicalId\":17553,\"journal\":{\"name\":\"Journal of Water Supply Research and Technology-aqua\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2023-07-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Water Supply Research and Technology-aqua\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2166/ws.2023.187\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Environmental Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Water Supply Research and Technology-aqua","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2166/ws.2023.187","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Environmental Science","Score":null,"Total":0}
Surfaces with modified morphology and wettability arrangement: a potential medium for water harvesting in desertification areas
The cost of water transport for irrigating drought-endurable plants in desertification areas makes it important to develop other water sources. Research shows that freshwater produced by dewing could satisfy the water requirement during germination of desert plants, therefore, functional materials that promote dew formation provide solutions for reduction of plant irrigation costs in arid or semi-arid regions. In this review, feasibility of utilizing trace irrigation for ensuring survival of desert plants has been demonstrated. The technologies of preparing water harvesting materials with modified microstructure and wettability arrangement have been introduced, it has been shown that surface embedded with a bump array which has counter wettability compared with its plane section is a common morphology adopted by current works. After comparing climates in desertification regions with those in dewing chambers, it has been found that currently, the expected values of dew productivities of most water harvesting materials in deserted areas will not be as efficient as they performed in experiments due to low relative humidity. However, hydrophobic surface with submicron scale hydrophilic spherical cavity array produced by nanosphere lithography has shown reliable prospects in reducing the energy barrier of heterogeneous nucleation and thus become a more potential medium in dew water production.
期刊介绍:
Journal of Water Supply: Research and Technology - Aqua publishes peer-reviewed scientific & technical, review, and practical/ operational papers dealing with research and development in water supply technology and management, including economics, training and public relations on a national and international level.