原油粘度预测人工智能模型的发展

Luai Ali Al-Amoudi, Ba Geri, S. Patil, Salem O. Baarimah
{"title":"原油粘度预测人工智能模型的发展","authors":"Luai Ali Al-Amoudi, Ba Geri, S. Patil, Salem O. Baarimah","doi":"10.2118/194741-MS","DOIUrl":null,"url":null,"abstract":"\n Crude oil viscosity is a significant parameter for the fluid flow in both porous media and pipe lines. Therefore, it has to be determined using highly accurate methods. Oil viscosity is usually predicted with the correlations obtained from the laboratory measured data. However, some of the presented correlations have very complicated assumptions which make them very difficult to apply in most of the case studies reported. On the other hand, simplified correlations companies the accuracy.\n The present work in this paper studies predictive capabilities of Artificial Intelligence (AI) to estimate the oil viscosity. Artificial Neural Network (ANN) models are proposed to predict the undersaturated, saturated and dead oil viscosity in Yemeni fields. A data set consisting 545 of laboratory measurements on oil samples was gathered from different oil fields in Yemen. 70% of the data points were used to train the proposed ANN models while the remaining data set was tested the model performance. The performance of the ANN methods was compared with some of the conventional correlations such as (Beal's correlation, Khan's correlation, Kartoatmodjo and Schmidt correlation, Vasquez-Begg's correlation, Chew and Connaly correlation, Beggs and Robinson correlation, Elsharqawy correlation and Glaso's correlation).\n The result of this study shows the superiority of the Artificial Neural Network (ANN) models over the current models for predicting oil viscosity from PVT data. The comparative results displayed that the proposed ANN models performed better with higher accuracy than those obtained with published correlations.","PeriodicalId":11031,"journal":{"name":"Day 4 Thu, March 21, 2019","volume":"31 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Development of Artificial Intelligence Models for Prediction of Crude Oil Viscosity\",\"authors\":\"Luai Ali Al-Amoudi, Ba Geri, S. Patil, Salem O. Baarimah\",\"doi\":\"10.2118/194741-MS\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Crude oil viscosity is a significant parameter for the fluid flow in both porous media and pipe lines. Therefore, it has to be determined using highly accurate methods. Oil viscosity is usually predicted with the correlations obtained from the laboratory measured data. However, some of the presented correlations have very complicated assumptions which make them very difficult to apply in most of the case studies reported. On the other hand, simplified correlations companies the accuracy.\\n The present work in this paper studies predictive capabilities of Artificial Intelligence (AI) to estimate the oil viscosity. Artificial Neural Network (ANN) models are proposed to predict the undersaturated, saturated and dead oil viscosity in Yemeni fields. A data set consisting 545 of laboratory measurements on oil samples was gathered from different oil fields in Yemen. 70% of the data points were used to train the proposed ANN models while the remaining data set was tested the model performance. The performance of the ANN methods was compared with some of the conventional correlations such as (Beal's correlation, Khan's correlation, Kartoatmodjo and Schmidt correlation, Vasquez-Begg's correlation, Chew and Connaly correlation, Beggs and Robinson correlation, Elsharqawy correlation and Glaso's correlation).\\n The result of this study shows the superiority of the Artificial Neural Network (ANN) models over the current models for predicting oil viscosity from PVT data. The comparative results displayed that the proposed ANN models performed better with higher accuracy than those obtained with published correlations.\",\"PeriodicalId\":11031,\"journal\":{\"name\":\"Day 4 Thu, March 21, 2019\",\"volume\":\"31 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-03-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Day 4 Thu, March 21, 2019\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2118/194741-MS\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Day 4 Thu, March 21, 2019","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2118/194741-MS","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

原油粘度是流体在多孔介质和管道中流动的重要参数。因此,必须使用高度精确的方法来确定。通常用实验室测量数据得到的相关性来预测油的粘度。然而,所提出的一些相关性具有非常复杂的假设,这使得它们很难应用于所报告的大多数案例研究。另一方面,简化相关性提高了准确性。本文研究了人工智能(AI)对油品粘度的预测能力。提出了用人工神经网络(ANN)模型预测也门油田欠饱和、饱和和死油粘度的方法。从也门的不同油田收集了545个油样的实验室测量数据集,其中70%的数据点用于训练所提出的人工神经网络模型,其余数据集用于测试模型的性能。将人工神经网络方法的性能与一些常规相关性(Beal相关、Khan相关、Kartoatmodjo和Schmidt相关、Vasquez-Begg相关、Chew和Connaly相关、Beggs和Robinson相关、Elsharqawy相关和Glaso相关)进行了比较。研究结果表明,人工神经网络(ANN)模型在利用PVT数据预测油品粘度方面优于现有模型。对比结果表明,本文提出的人工神经网络模型比基于已发表相关性的模型性能更好,精度更高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Development of Artificial Intelligence Models for Prediction of Crude Oil Viscosity
Crude oil viscosity is a significant parameter for the fluid flow in both porous media and pipe lines. Therefore, it has to be determined using highly accurate methods. Oil viscosity is usually predicted with the correlations obtained from the laboratory measured data. However, some of the presented correlations have very complicated assumptions which make them very difficult to apply in most of the case studies reported. On the other hand, simplified correlations companies the accuracy. The present work in this paper studies predictive capabilities of Artificial Intelligence (AI) to estimate the oil viscosity. Artificial Neural Network (ANN) models are proposed to predict the undersaturated, saturated and dead oil viscosity in Yemeni fields. A data set consisting 545 of laboratory measurements on oil samples was gathered from different oil fields in Yemen. 70% of the data points were used to train the proposed ANN models while the remaining data set was tested the model performance. The performance of the ANN methods was compared with some of the conventional correlations such as (Beal's correlation, Khan's correlation, Kartoatmodjo and Schmidt correlation, Vasquez-Begg's correlation, Chew and Connaly correlation, Beggs and Robinson correlation, Elsharqawy correlation and Glaso's correlation). The result of this study shows the superiority of the Artificial Neural Network (ANN) models over the current models for predicting oil viscosity from PVT data. The comparative results displayed that the proposed ANN models performed better with higher accuracy than those obtained with published correlations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Size distribution analysis of microstickies treated by enzyme mixtures in papermaking whitewater Evaluating hardness and the S-test Controllable anisotropic properties of wet-laid hydroentangled nonwovens A study of the softness of household tissues using a tissue softness analyzer and hand-felt panels A REVIEW OF MULTI HOMING AND ITS ASSOCIATED RESEARCH AREAS ALONG WITH INTERNET OF THINGS (IOT)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1