疲劳状态下缺口效应分析

K. Yanase, M. Endo
{"title":"疲劳状态下缺口效应分析","authors":"K. Yanase, M. Endo","doi":"10.1520/JAI103944","DOIUrl":null,"url":null,"abstract":"The fatigue-crack propagation at stress concentrations is a topic of significant importance in a number of engineering applications. Further, it is recognized that the fatigue limit of notched components is dictated by the critical condition for either initiation or propagation of a small crack at the root of a notch. Moreover, because most fatigue cracks spend the vast majority of their lives as short cracks, the behavior of such a flaw is of significant importance. In the literature, McEvily and co-workers [McEvily, A. J., Eifler, D., and Macherauch, E., “An analysis of the Fatigue Growth of Short Fatigue Cracks,” Eng. Fract. Mech., Vol. 40, No. 3, 1991, pp. 571–584] developed a modified linear elastic fracture mechanics (LEFM) approach to tackle a number of fatigue problems, including the growth and threshold behavior of small fatigue cracks. In this study, a further extension is presented to deal with notch effects in fatigue. In this method, the elastic–plastic behavior and the crack closure are taken into account, as the major factors responsible for the peculiar behavior of small fatigue cracks emanating from notches. In the present paper, the notch effect in fatigue is systematically investigated by making use of a mechanism-based computational framework. A series of parametric studies demonstrate the predictive capability of the proposed framework. Based on the thorough investigation for notch-fatigue problem, the novelty of present study is illustrated.","PeriodicalId":15057,"journal":{"name":"Journal of Astm International","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2012-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Analysis of the Notch Effect in Fatigue\",\"authors\":\"K. Yanase, M. Endo\",\"doi\":\"10.1520/JAI103944\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The fatigue-crack propagation at stress concentrations is a topic of significant importance in a number of engineering applications. Further, it is recognized that the fatigue limit of notched components is dictated by the critical condition for either initiation or propagation of a small crack at the root of a notch. Moreover, because most fatigue cracks spend the vast majority of their lives as short cracks, the behavior of such a flaw is of significant importance. In the literature, McEvily and co-workers [McEvily, A. J., Eifler, D., and Macherauch, E., “An analysis of the Fatigue Growth of Short Fatigue Cracks,” Eng. Fract. Mech., Vol. 40, No. 3, 1991, pp. 571–584] developed a modified linear elastic fracture mechanics (LEFM) approach to tackle a number of fatigue problems, including the growth and threshold behavior of small fatigue cracks. In this study, a further extension is presented to deal with notch effects in fatigue. In this method, the elastic–plastic behavior and the crack closure are taken into account, as the major factors responsible for the peculiar behavior of small fatigue cracks emanating from notches. In the present paper, the notch effect in fatigue is systematically investigated by making use of a mechanism-based computational framework. A series of parametric studies demonstrate the predictive capability of the proposed framework. Based on the thorough investigation for notch-fatigue problem, the novelty of present study is illustrated.\",\"PeriodicalId\":15057,\"journal\":{\"name\":\"Journal of Astm International\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Astm International\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1520/JAI103944\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Astm International","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1520/JAI103944","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

应力集中下的疲劳裂纹扩展问题在许多工程应用中具有重要意义。此外,人们认识到,缺口部件的疲劳极限取决于缺口根部小裂纹的萌生或扩展的临界条件。此外,由于大多数疲劳裂纹以短裂纹的形式度过其寿命的绝大部分,因此这种裂纹的行为是非常重要的。在文献中,McEvily和他的同事[McEvily, A. J., Eifler, D., and Macherauch, E.],“短疲劳裂纹的疲劳扩展分析”,英。打破。动力机械。[j], Vol. 40, No. 3, 1991, pp. 571-584]开发了一种改进的线弹性断裂力学(LEFM)方法来解决许多疲劳问题,包括小疲劳裂纹的扩展和阈值行为。在本研究中,提出了进一步的扩展,以处理缺口效应的疲劳。在这种方法中,考虑了弹塑性行为和裂纹闭合,作为造成缺口产生的小疲劳裂纹的特殊行为的主要因素。本文采用基于力学的计算框架,系统地研究了缺口效应在疲劳中的作用。一系列的参数研究证明了该框架的预测能力。通过对缺口疲劳问题的深入研究,说明了本文研究的新颖性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Analysis of the Notch Effect in Fatigue
The fatigue-crack propagation at stress concentrations is a topic of significant importance in a number of engineering applications. Further, it is recognized that the fatigue limit of notched components is dictated by the critical condition for either initiation or propagation of a small crack at the root of a notch. Moreover, because most fatigue cracks spend the vast majority of their lives as short cracks, the behavior of such a flaw is of significant importance. In the literature, McEvily and co-workers [McEvily, A. J., Eifler, D., and Macherauch, E., “An analysis of the Fatigue Growth of Short Fatigue Cracks,” Eng. Fract. Mech., Vol. 40, No. 3, 1991, pp. 571–584] developed a modified linear elastic fracture mechanics (LEFM) approach to tackle a number of fatigue problems, including the growth and threshold behavior of small fatigue cracks. In this study, a further extension is presented to deal with notch effects in fatigue. In this method, the elastic–plastic behavior and the crack closure are taken into account, as the major factors responsible for the peculiar behavior of small fatigue cracks emanating from notches. In the present paper, the notch effect in fatigue is systematically investigated by making use of a mechanism-based computational framework. A series of parametric studies demonstrate the predictive capability of the proposed framework. Based on the thorough investigation for notch-fatigue problem, the novelty of present study is illustrated.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Flame Retardant Emissions from Spray Polyurethane Foam Insulation Economic Impact of Improved Service-Life Prediction for Seams in Low-Slope EPDM Roofing The Economics of Residential Fire Sprinklers and the Potential Impact of Recent Code Changes Roller Profile Development for an Axially Loaded, Single Row Spherical Roller Bearing in an Oscillating Application Characterization of Adhesive Joints for Hybrid Steel-Glass Beams by Means of Simplified Small Scale Tests
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1