Ejimofor Agbo, Chinedu Anyanwu, Oluwasola Olowoyeye, Titus Ini, Victor Emah
{"title":"在大斜度井中,单次起下钻油管完成了多节段差异衰竭油藏的射孔作业。挑战、经验教训和最佳实践","authors":"Ejimofor Agbo, Chinedu Anyanwu, Oluwasola Olowoyeye, Titus Ini, Victor Emah","doi":"10.2118/198757-MS","DOIUrl":null,"url":null,"abstract":"\n This paper demonstrates how 280ft of oil column spread unevenly across multiple and differentially depleted reservoir units separated by shale layers of varying thicknesses in a highly deviated (62 deg.) well was perforated in a one trip system and how the project cost was minimized by achieving multiple perforations in a single trip whilst retaining capacity to effectively cure losses and mitigating post-perforation well control risks. Against the conventional perforation methodology where reservoir units are perforated individually, isolated before carrying out the next perforation in the subsequent reservoir. The one trip system was designed and deployed in one run targeting all the 6 separate carefully selected sand lobes in one run ensuring good standoff from the contact and zonal isolation behind casing. Successful execution was confirmed with all the expected physical outcomes which includes pipe vibration, brine loss as well inspection of the spent guns. A post perforation noise and production logging also confirmed flow across all planned perforation intervals. Perforation of a highly deviated well in differentially depleted multi-lobed reservoirs present significant operational risks. This paper illustrates how one can safely collapse multiple conventional perforation runs into a single trip with its attendant benefits on cost efficiency, crossflow and well control. This is the first of its kind in a swampy terrain, shallow offshore Niger Delta.","PeriodicalId":11250,"journal":{"name":"Day 3 Wed, August 07, 2019","volume":"47 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Single Trip Tubing Conveyed Perforations Across Multi-Lobed Differentially Depleted Reservoir Complexes In A Highly Deviated Well – Challenges, Lessons Learned & Best Practices\",\"authors\":\"Ejimofor Agbo, Chinedu Anyanwu, Oluwasola Olowoyeye, Titus Ini, Victor Emah\",\"doi\":\"10.2118/198757-MS\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n This paper demonstrates how 280ft of oil column spread unevenly across multiple and differentially depleted reservoir units separated by shale layers of varying thicknesses in a highly deviated (62 deg.) well was perforated in a one trip system and how the project cost was minimized by achieving multiple perforations in a single trip whilst retaining capacity to effectively cure losses and mitigating post-perforation well control risks. Against the conventional perforation methodology where reservoir units are perforated individually, isolated before carrying out the next perforation in the subsequent reservoir. The one trip system was designed and deployed in one run targeting all the 6 separate carefully selected sand lobes in one run ensuring good standoff from the contact and zonal isolation behind casing. Successful execution was confirmed with all the expected physical outcomes which includes pipe vibration, brine loss as well inspection of the spent guns. A post perforation noise and production logging also confirmed flow across all planned perforation intervals. Perforation of a highly deviated well in differentially depleted multi-lobed reservoirs present significant operational risks. This paper illustrates how one can safely collapse multiple conventional perforation runs into a single trip with its attendant benefits on cost efficiency, crossflow and well control. This is the first of its kind in a swampy terrain, shallow offshore Niger Delta.\",\"PeriodicalId\":11250,\"journal\":{\"name\":\"Day 3 Wed, August 07, 2019\",\"volume\":\"47 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-08-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Day 3 Wed, August 07, 2019\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2118/198757-MS\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Day 3 Wed, August 07, 2019","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2118/198757-MS","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Single Trip Tubing Conveyed Perforations Across Multi-Lobed Differentially Depleted Reservoir Complexes In A Highly Deviated Well – Challenges, Lessons Learned & Best Practices
This paper demonstrates how 280ft of oil column spread unevenly across multiple and differentially depleted reservoir units separated by shale layers of varying thicknesses in a highly deviated (62 deg.) well was perforated in a one trip system and how the project cost was minimized by achieving multiple perforations in a single trip whilst retaining capacity to effectively cure losses and mitigating post-perforation well control risks. Against the conventional perforation methodology where reservoir units are perforated individually, isolated before carrying out the next perforation in the subsequent reservoir. The one trip system was designed and deployed in one run targeting all the 6 separate carefully selected sand lobes in one run ensuring good standoff from the contact and zonal isolation behind casing. Successful execution was confirmed with all the expected physical outcomes which includes pipe vibration, brine loss as well inspection of the spent guns. A post perforation noise and production logging also confirmed flow across all planned perforation intervals. Perforation of a highly deviated well in differentially depleted multi-lobed reservoirs present significant operational risks. This paper illustrates how one can safely collapse multiple conventional perforation runs into a single trip with its attendant benefits on cost efficiency, crossflow and well control. This is the first of its kind in a swampy terrain, shallow offshore Niger Delta.