钛在680 ~ 1000℃不同温度下热处理后的组织与强度

Xingyu Zhang, B. Hanes, D. Brooks, S. Niezgoda
{"title":"钛在680 ~ 1000℃不同温度下热处理后的组织与强度","authors":"Xingyu Zhang, B. Hanes, D. Brooks, S. Niezgoda","doi":"10.11648/J.IJMSA.20190803.13","DOIUrl":null,"url":null,"abstract":"The main purpose of this research is to determine the effect of brazing treatment on mechanical properties of both titanium Grade 2 and titanium Grade 5 alloys. The research group obtained Grade 2 and Grade 5 titanium alloys and brazing- treated them at temperatures of 680, 800, 850, 900, 920, 950, and 1000°C. Afterward, each sample was tensile tested, mounted, hardness tested, and observed by optical microscope to investigate corresponding microstructures. Based on the result sheets, it was revealed that the yield strength and tensile strength and ultimate strength of Ti Grade 2 alloys showed drastic fall after heating to 680°C, then no change up to 850°C, fall again up to 950°C, and remained unchanged strength to 1000°C However, the Ti Grade 5 samples showed completely different behavior. The yield strength was unchanged after heating to different temperatures. When heating to 680°C. It didn’t affect the strength at all, then after heating to 800°C, the strength decreased about 100MPa. But after this, higher temperatures didn’t change strength anymore. The Ultimate strength however showed a different trend as it continuously went down at elevated temperature. Meanwhile, the hardness of both alloys decreased constantly when temperature increased. Regarding Ti Grade 2 alloys, the initial drop in strength was due to annealing. Around 800°C, alpha laths started to form and that caused strength to increase. When the temperature reached at 850°C, the basketweave alpha laths were formed. Over that temperature, the grain sizes were significantly large which caused the strength to decrease. However, there was not much of change in alpha/beta ratio for Ti Grade 5 alloys. EBSD could be a helpful method since the alpha grain size can be determined from that.","PeriodicalId":14116,"journal":{"name":"International Journal of Materials Science and Applications","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2019-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Microstructure and Strength of Titanium After Heat Treatment at Different Temperatures in the Range of 680-1000°C\",\"authors\":\"Xingyu Zhang, B. Hanes, D. Brooks, S. Niezgoda\",\"doi\":\"10.11648/J.IJMSA.20190803.13\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The main purpose of this research is to determine the effect of brazing treatment on mechanical properties of both titanium Grade 2 and titanium Grade 5 alloys. The research group obtained Grade 2 and Grade 5 titanium alloys and brazing- treated them at temperatures of 680, 800, 850, 900, 920, 950, and 1000°C. Afterward, each sample was tensile tested, mounted, hardness tested, and observed by optical microscope to investigate corresponding microstructures. Based on the result sheets, it was revealed that the yield strength and tensile strength and ultimate strength of Ti Grade 2 alloys showed drastic fall after heating to 680°C, then no change up to 850°C, fall again up to 950°C, and remained unchanged strength to 1000°C However, the Ti Grade 5 samples showed completely different behavior. The yield strength was unchanged after heating to different temperatures. When heating to 680°C. It didn’t affect the strength at all, then after heating to 800°C, the strength decreased about 100MPa. But after this, higher temperatures didn’t change strength anymore. The Ultimate strength however showed a different trend as it continuously went down at elevated temperature. Meanwhile, the hardness of both alloys decreased constantly when temperature increased. Regarding Ti Grade 2 alloys, the initial drop in strength was due to annealing. Around 800°C, alpha laths started to form and that caused strength to increase. When the temperature reached at 850°C, the basketweave alpha laths were formed. Over that temperature, the grain sizes were significantly large which caused the strength to decrease. However, there was not much of change in alpha/beta ratio for Ti Grade 5 alloys. EBSD could be a helpful method since the alpha grain size can be determined from that.\",\"PeriodicalId\":14116,\"journal\":{\"name\":\"International Journal of Materials Science and Applications\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-08-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Materials Science and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.11648/J.IJMSA.20190803.13\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Materials Science and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11648/J.IJMSA.20190803.13","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本研究的主要目的是确定钎焊处理对2级钛和5级钛合金力学性能的影响。研究小组获得了2级和5级钛合金并钎焊-在680,800,850,900,920,950和1000°C的温度下进行处理。随后,对每个样品进行拉伸测试、安装、硬度测试,并通过光学显微镜观察相应的显微组织。结果表明,Ti 2级合金的屈服强度、抗拉强度和极限强度在加热到680℃后急剧下降,到850℃时没有变化,到950℃时再次下降,到1000℃时强度保持不变。而Ti 5级合金则表现出完全不同的行为。加热到不同温度后,屈服强度没有变化。加热至680°C时。对强度没有影响,加热到800℃后,强度下降约100MPa。但在此之后,更高的温度不再改变强度。但随着温度的升高,极限强度呈现出不同的下降趋势。同时,两种合金的硬度都随着温度的升高而不断降低。对于Ti 2级合金,最初的强度下降是由于退火。在800°C左右,阿尔法板条开始形成,并导致强度增加。当温度达到850℃时,篮织阿尔法板条形成。在此温度下,晶粒尺寸明显变大,导致强度下降。而Ti 5级合金的α / β比变化不大。EBSD可能是一种有用的方法,因为可以从中确定α晶粒尺寸。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Microstructure and Strength of Titanium After Heat Treatment at Different Temperatures in the Range of 680-1000°C
The main purpose of this research is to determine the effect of brazing treatment on mechanical properties of both titanium Grade 2 and titanium Grade 5 alloys. The research group obtained Grade 2 and Grade 5 titanium alloys and brazing- treated them at temperatures of 680, 800, 850, 900, 920, 950, and 1000°C. Afterward, each sample was tensile tested, mounted, hardness tested, and observed by optical microscope to investigate corresponding microstructures. Based on the result sheets, it was revealed that the yield strength and tensile strength and ultimate strength of Ti Grade 2 alloys showed drastic fall after heating to 680°C, then no change up to 850°C, fall again up to 950°C, and remained unchanged strength to 1000°C However, the Ti Grade 5 samples showed completely different behavior. The yield strength was unchanged after heating to different temperatures. When heating to 680°C. It didn’t affect the strength at all, then after heating to 800°C, the strength decreased about 100MPa. But after this, higher temperatures didn’t change strength anymore. The Ultimate strength however showed a different trend as it continuously went down at elevated temperature. Meanwhile, the hardness of both alloys decreased constantly when temperature increased. Regarding Ti Grade 2 alloys, the initial drop in strength was due to annealing. Around 800°C, alpha laths started to form and that caused strength to increase. When the temperature reached at 850°C, the basketweave alpha laths were formed. Over that temperature, the grain sizes were significantly large which caused the strength to decrease. However, there was not much of change in alpha/beta ratio for Ti Grade 5 alloys. EBSD could be a helpful method since the alpha grain size can be determined from that.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Graphene Oxide Nanocarriers for Effective Drug Delivery in Breast Cancer Treatment Thermal Insulation of “akassa” Hot Preservation Baskets Using Cow Dung Coatings Review on Fundamental Considerations During Lignocellulosic Fiber Characterization in Light Micromechanical Analysis of Their Composites Surface Modification of Ti-6Al-4V Alloy by Polycaprolactone-Graphene Oxide Composite Coating Dielectric Relaxation, Electric Conductivity and Thermodynamic Studies on Epoxy Polyurethane Blend and Their Composites
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1