手写单词识别与更正属性

Jon Almazán, Albert Gordo, A. Fornés, Ernest Valveny
{"title":"手写单词识别与更正属性","authors":"Jon Almazán, Albert Gordo, A. Fornés, Ernest Valveny","doi":"10.1109/ICCV.2013.130","DOIUrl":null,"url":null,"abstract":"We propose an approach to multi-writer word spotting, where the goal is to find a query word in a dataset comprised of document images. We propose an attributes-based approach that leads to a low-dimensional, fixed-length representation of the word images that is fast to compute and, especially, fast to compare. This approach naturally leads to an unified representation of word images and strings, which seamlessly allows one to indistinctly perform query-by-example, where the query is an image, and query-by-string, where the query is a string. We also propose a calibration scheme to correct the attributes scores based on Canonical Correlation Analysis that greatly improves the results on a challenging dataset. We test our approach on two public datasets showing state-of-the-art results.","PeriodicalId":6351,"journal":{"name":"2013 IEEE International Conference on Computer Vision","volume":"1 1","pages":"1017-1024"},"PeriodicalIF":0.0000,"publicationDate":"2013-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"59","resultStr":"{\"title\":\"Handwritten Word Spotting with Corrected Attributes\",\"authors\":\"Jon Almazán, Albert Gordo, A. Fornés, Ernest Valveny\",\"doi\":\"10.1109/ICCV.2013.130\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose an approach to multi-writer word spotting, where the goal is to find a query word in a dataset comprised of document images. We propose an attributes-based approach that leads to a low-dimensional, fixed-length representation of the word images that is fast to compute and, especially, fast to compare. This approach naturally leads to an unified representation of word images and strings, which seamlessly allows one to indistinctly perform query-by-example, where the query is an image, and query-by-string, where the query is a string. We also propose a calibration scheme to correct the attributes scores based on Canonical Correlation Analysis that greatly improves the results on a challenging dataset. We test our approach on two public datasets showing state-of-the-art results.\",\"PeriodicalId\":6351,\"journal\":{\"name\":\"2013 IEEE International Conference on Computer Vision\",\"volume\":\"1 1\",\"pages\":\"1017-1024\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"59\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 IEEE International Conference on Computer Vision\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCV.2013.130\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE International Conference on Computer Vision","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCV.2013.130","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 59

摘要

我们提出了一种多作者词识别方法,其目标是在由文档图像组成的数据集中找到一个查询词。我们提出了一种基于属性的方法,该方法可以产生低维固定长度的单词图像表示,计算速度快,特别是比较速度快。这种方法自然会导致单词图像和字符串的统一表示,从而无缝地允许按示例执行查询,其中查询是图像,而按字符串执行查询,其中查询是字符串。我们还提出了一种基于典型相关分析的属性分数校正方案,极大地改善了具有挑战性数据集的结果。我们在两个公共数据集上测试了我们的方法,显示了最先进的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Handwritten Word Spotting with Corrected Attributes
We propose an approach to multi-writer word spotting, where the goal is to find a query word in a dataset comprised of document images. We propose an attributes-based approach that leads to a low-dimensional, fixed-length representation of the word images that is fast to compute and, especially, fast to compare. This approach naturally leads to an unified representation of word images and strings, which seamlessly allows one to indistinctly perform query-by-example, where the query is an image, and query-by-string, where the query is a string. We also propose a calibration scheme to correct the attributes scores based on Canonical Correlation Analysis that greatly improves the results on a challenging dataset. We test our approach on two public datasets showing state-of-the-art results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
PixelTrack: A Fast Adaptive Algorithm for Tracking Non-rigid Objects A General Dense Image Matching Framework Combining Direct and Feature-Based Costs Latent Space Sparse Subspace Clustering Non-convex P-Norm Projection for Robust Sparsity Hierarchical Joint Max-Margin Learning of Mid and Top Level Representations for Visual Recognition
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1