启用移动医疗

Anthony P.F. Turner
{"title":"启用移动医疗","authors":"Anthony P.F. Turner","doi":"10.1016/j.protcy.2017.04.003","DOIUrl":null,"url":null,"abstract":"<div><p>The need for new, easy-to-use, home and decentralised diagnostics is now greater than ever and it is rapidly becoming apparent that biosensors can contribute substantially to reducing healthcare costs. New thinking is crucial to finding effective solutions that deliver the high quality of life rightly demanded by our ever ageing population while leveraging technology to deliver this in a cost-effective manner. Several key drivers are catalysing change. Personalised medicine recognises that every individual is different and needs a tailor-made health package; these differences can only be identified with an appropriate suite of diagnostics. Individuals are increasing recognising that data about their bodies should be owned by them and that they should have the choice to use and supplement this information. This generates consumer choice and drives evidence-based payment, where the success of outcomes needs to be measured. Focus on the individual and their needs drives decentralisation and the possible radical restructuring of how we deliver health management. We already see “health rooms” in pharmacies, but the next step will be health rooms in your home, in your pocket or on your wrist. These advances are underpinned by technologies facilitating mobility and data processing, but at the core are rapid, convenient and easy ways to measure our body chemistries at the genomic, proteomic and metabolomic levels. This presentation will focus on meeting these challenges using paper-based electronics, polymers and integrated electrochemical systems to deliver inexpensive instruments for a wide range of bioanalytical applications. Approaches will be illustrated by multi-parametric monitoring for the management of diabetes, chronic kidney disease and stress, reversible and label-free affinity sensors for cancer markers and heart disease, aptasensors for pathogens and cancer cells, and robust microbial-differentiation arrays. Further development will result in cost reduction and a diversity of formats such as point-of-care tests, smart packaging, telemetric strips and print-on-demand analytical devices.</p></div>","PeriodicalId":101042,"journal":{"name":"Procedia Technology","volume":"27 ","pages":"Pages 4-5"},"PeriodicalIF":0.0000,"publicationDate":"2017-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.protcy.2017.04.003","citationCount":"2","resultStr":"{\"title\":\"Enabling Mobile Health\",\"authors\":\"Anthony P.F. Turner\",\"doi\":\"10.1016/j.protcy.2017.04.003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The need for new, easy-to-use, home and decentralised diagnostics is now greater than ever and it is rapidly becoming apparent that biosensors can contribute substantially to reducing healthcare costs. New thinking is crucial to finding effective solutions that deliver the high quality of life rightly demanded by our ever ageing population while leveraging technology to deliver this in a cost-effective manner. Several key drivers are catalysing change. Personalised medicine recognises that every individual is different and needs a tailor-made health package; these differences can only be identified with an appropriate suite of diagnostics. Individuals are increasing recognising that data about their bodies should be owned by them and that they should have the choice to use and supplement this information. This generates consumer choice and drives evidence-based payment, where the success of outcomes needs to be measured. Focus on the individual and their needs drives decentralisation and the possible radical restructuring of how we deliver health management. We already see “health rooms” in pharmacies, but the next step will be health rooms in your home, in your pocket or on your wrist. These advances are underpinned by technologies facilitating mobility and data processing, but at the core are rapid, convenient and easy ways to measure our body chemistries at the genomic, proteomic and metabolomic levels. This presentation will focus on meeting these challenges using paper-based electronics, polymers and integrated electrochemical systems to deliver inexpensive instruments for a wide range of bioanalytical applications. Approaches will be illustrated by multi-parametric monitoring for the management of diabetes, chronic kidney disease and stress, reversible and label-free affinity sensors for cancer markers and heart disease, aptasensors for pathogens and cancer cells, and robust microbial-differentiation arrays. Further development will result in cost reduction and a diversity of formats such as point-of-care tests, smart packaging, telemetric strips and print-on-demand analytical devices.</p></div>\",\"PeriodicalId\":101042,\"journal\":{\"name\":\"Procedia Technology\",\"volume\":\"27 \",\"pages\":\"Pages 4-5\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/j.protcy.2017.04.003\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Procedia Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S221201731730004X\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Procedia Technology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S221201731730004X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

现在,对易于使用的新型家庭和分散式诊断的需求比以往任何时候都要大,而且生物传感器对降低医疗成本的贡献正在迅速变得明显。要找到有效的解决方案,既能满足日益老龄化的人口对高质量生活的需求,又能利用技术以经济有效的方式实现这一目标,新思维至关重要。几个关键的驱动因素正在催化变化。个性化医疗认识到每个人都是不同的,需要量身定制的保健方案;这些差异只能通过一套适当的诊断来识别。个人越来越认识到,关于他们身体的数据应该归他们所有,他们应该有权选择使用和补充这些信息。这产生了消费者的选择,并推动了基于证据的支付,在这种支付中,需要衡量结果的成功与否。对个人及其需求的关注推动了权力下放,并可能彻底改变我们提供健康管理的方式。我们已经在药店看到了“健康室”,但下一步,健康室将在你的家里,在你的口袋里或在手腕上。这些进步的基础是促进移动性和数据处理的技术,但核心是快速、方便和简单的方法,可以在基因组、蛋白质组学和代谢组学水平上测量我们的身体化学。本次演讲将重点介绍如何利用纸质电子、聚合物和集成电化学系统来应对这些挑战,为广泛的生物分析应用提供廉价的仪器。方法将通过用于糖尿病、慢性肾病和应激管理的多参数监测、用于癌症标志物和心脏病的可逆和无标签亲和传感器、用于病原体和癌细胞的适配体传感器以及强大的微生物分化阵列来说明。进一步的发展将导致成本的降低和形式的多样化,如即时检测、智能包装、遥测试纸和按需打印分析设备。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Enabling Mobile Health

The need for new, easy-to-use, home and decentralised diagnostics is now greater than ever and it is rapidly becoming apparent that biosensors can contribute substantially to reducing healthcare costs. New thinking is crucial to finding effective solutions that deliver the high quality of life rightly demanded by our ever ageing population while leveraging technology to deliver this in a cost-effective manner. Several key drivers are catalysing change. Personalised medicine recognises that every individual is different and needs a tailor-made health package; these differences can only be identified with an appropriate suite of diagnostics. Individuals are increasing recognising that data about their bodies should be owned by them and that they should have the choice to use and supplement this information. This generates consumer choice and drives evidence-based payment, where the success of outcomes needs to be measured. Focus on the individual and their needs drives decentralisation and the possible radical restructuring of how we deliver health management. We already see “health rooms” in pharmacies, but the next step will be health rooms in your home, in your pocket or on your wrist. These advances are underpinned by technologies facilitating mobility and data processing, but at the core are rapid, convenient and easy ways to measure our body chemistries at the genomic, proteomic and metabolomic levels. This presentation will focus on meeting these challenges using paper-based electronics, polymers and integrated electrochemical systems to deliver inexpensive instruments for a wide range of bioanalytical applications. Approaches will be illustrated by multi-parametric monitoring for the management of diabetes, chronic kidney disease and stress, reversible and label-free affinity sensors for cancer markers and heart disease, aptasensors for pathogens and cancer cells, and robust microbial-differentiation arrays. Further development will result in cost reduction and a diversity of formats such as point-of-care tests, smart packaging, telemetric strips and print-on-demand analytical devices.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Nanostructured Platform Based on Graphene-polypyrrole Composite for Immunosensor Fabrication Microfluidic Biochip for Studying Cellular Response to Non-homogeneous DC Electric Fields A Nanoporous Alumina Membrane Based Impedance Biosensor for Histamine Detection with Magnetic Nanoparticles Separation and Amplification Single Interdigital Transducer as Surface Acoustic Wave Impedance Sensor Metabolomics on Integrated Circuit
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1