Alireza Heidari, Margaret Hotz, Nancy MacDonald, Victoria Peterson, Angela Caissutti, E. Besana, J. Esposito, K. Schmitt, Ling-Yu Chan, Francesca Sherwood, M. Henderson, Jimmy Kimmel
{"title":"纳米氧化镉(CdO)在肿瘤预防、预后、诊断、成像、筛查、治疗和管理中的应用及其在同步加速器和同步回旋辐射下克服耐药的作用和应用","authors":"Alireza Heidari, Margaret Hotz, Nancy MacDonald, Victoria Peterson, Angela Caissutti, E. Besana, J. Esposito, K. Schmitt, Ling-Yu Chan, Francesca Sherwood, M. Henderson, Jimmy Kimmel","doi":"10.14419/ijac.v9i2.31653","DOIUrl":null,"url":null,"abstract":"In the current research, Cadmium Oxide (CdO) nanoparticles–based drug delivery in cancer prevention, prognosis, diagnosis, imaging, screening, treatment and management and its role and application in overcoming drug resistance under synchrotron and synchrocyclotron radiations. is investigated. The calculation of thickness and optical constants of Cadmium Oxide (CdO) Cadmium Oxide (CdO) nanoparticles–based drug delivery in cancer prevention, prognosis, diagnosis, imaging, screening, treatment and management and its role and application in overcoming drug resistance under synchrotron and synchrocyclotron radiations. produced using sol–gel method over glassy medium through a single reflection spectrum is presented. To obtain an appropriate fit for reflection spectrum, the classic Drude–Lorentz model for parametric di–electric function is used. The best fitting parameters are determined to simulate the reflection spectrum using Lovenberg–Marquardt optimization method. The simulated reflectivity from the derived optical constants and thickness are in good agreement with experimental results. Cadmium Oxide (Cdo) Nanoparticles–Based Drug Delivery in Cancer Prevention, Prognosis, Diagnosis, Imaging, Screening, Treatment and Management and Its Role and Application in Overcoming Drug Resistance Under Synchrotron and Synchrocyclotron Radiations. ","PeriodicalId":13723,"journal":{"name":"International Journal of Advanced Chemistry","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2021-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"Cadmium oxide (CdO) nanoparticles–based drug delivery in cancer prevention, prognosis, diagnosis, imaging, screening, treatment and management and its role and application in overcoming drug resistance under synchrotron and synchrocyclotron radiations\",\"authors\":\"Alireza Heidari, Margaret Hotz, Nancy MacDonald, Victoria Peterson, Angela Caissutti, E. Besana, J. Esposito, K. Schmitt, Ling-Yu Chan, Francesca Sherwood, M. Henderson, Jimmy Kimmel\",\"doi\":\"10.14419/ijac.v9i2.31653\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the current research, Cadmium Oxide (CdO) nanoparticles–based drug delivery in cancer prevention, prognosis, diagnosis, imaging, screening, treatment and management and its role and application in overcoming drug resistance under synchrotron and synchrocyclotron radiations. is investigated. The calculation of thickness and optical constants of Cadmium Oxide (CdO) Cadmium Oxide (CdO) nanoparticles–based drug delivery in cancer prevention, prognosis, diagnosis, imaging, screening, treatment and management and its role and application in overcoming drug resistance under synchrotron and synchrocyclotron radiations. produced using sol–gel method over glassy medium through a single reflection spectrum is presented. To obtain an appropriate fit for reflection spectrum, the classic Drude–Lorentz model for parametric di–electric function is used. The best fitting parameters are determined to simulate the reflection spectrum using Lovenberg–Marquardt optimization method. The simulated reflectivity from the derived optical constants and thickness are in good agreement with experimental results. Cadmium Oxide (Cdo) Nanoparticles–Based Drug Delivery in Cancer Prevention, Prognosis, Diagnosis, Imaging, Screening, Treatment and Management and Its Role and Application in Overcoming Drug Resistance Under Synchrotron and Synchrocyclotron Radiations. \",\"PeriodicalId\":13723,\"journal\":{\"name\":\"International Journal of Advanced Chemistry\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-08-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Advanced Chemistry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.14419/ijac.v9i2.31653\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Advanced Chemistry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14419/ijac.v9i2.31653","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Cadmium oxide (CdO) nanoparticles–based drug delivery in cancer prevention, prognosis, diagnosis, imaging, screening, treatment and management and its role and application in overcoming drug resistance under synchrotron and synchrocyclotron radiations
In the current research, Cadmium Oxide (CdO) nanoparticles–based drug delivery in cancer prevention, prognosis, diagnosis, imaging, screening, treatment and management and its role and application in overcoming drug resistance under synchrotron and synchrocyclotron radiations. is investigated. The calculation of thickness and optical constants of Cadmium Oxide (CdO) Cadmium Oxide (CdO) nanoparticles–based drug delivery in cancer prevention, prognosis, diagnosis, imaging, screening, treatment and management and its role and application in overcoming drug resistance under synchrotron and synchrocyclotron radiations. produced using sol–gel method over glassy medium through a single reflection spectrum is presented. To obtain an appropriate fit for reflection spectrum, the classic Drude–Lorentz model for parametric di–electric function is used. The best fitting parameters are determined to simulate the reflection spectrum using Lovenberg–Marquardt optimization method. The simulated reflectivity from the derived optical constants and thickness are in good agreement with experimental results. Cadmium Oxide (Cdo) Nanoparticles–Based Drug Delivery in Cancer Prevention, Prognosis, Diagnosis, Imaging, Screening, Treatment and Management and Its Role and Application in Overcoming Drug Resistance Under Synchrotron and Synchrocyclotron Radiations.