测量两种森林的冠层结构和亚冠流的运动学

R. Staebler, D. Fitzjarrald
{"title":"测量两种森林的冠层结构和亚冠流的运动学","authors":"R. Staebler, D. Fitzjarrald","doi":"10.1175/JAM2265.1","DOIUrl":null,"url":null,"abstract":"A better understanding of forest subcanopy flows is needed to evaluate their role in the horizontal movement of scalars, particularly in complex terrain. This paper describes detailed measurements of the canopy structure and its variability in both the horizontal and vertical directions at a deciduous forest in complex terrain (the Harvard Forest, Petersham, Massachusetts). The effects of the trunks and subcanopy shrubs on the flow field at each of six subcanopy array locations are quantified. The dynamics of the subcanopy flow are examined with pragmatic methods that can be implemented on a small scale with limited resources to estimate the stress divergence, buoyancy, and pressure gradient forces that drive the flow. The subcanopy flow at the Harvard Forest was driven by mechanisms other than vertical stress divergence 75% of the time. Nocturnal flows were driven predominantly by the negative buoyancy of a relatively cool layer near the forest floor. The direction of the resulting drainage flows followed the azimuth of the longest forest-floor slope. Similar results were found at a much flatter site at Borden, Ontario, Canada. There was no clear evidence of flow reversals in the subcanopy in the lee of ridges or hills at the Harvard Forest even in high wind conditions, contrary to some model predictions.","PeriodicalId":15026,"journal":{"name":"Journal of Applied Meteorology","volume":"38 1","pages":"1161-1179"},"PeriodicalIF":0.0000,"publicationDate":"2005-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"64","resultStr":"{\"title\":\"Measuring Canopy Structure and the Kinematics of Subcanopy Flows in Two Forests\",\"authors\":\"R. Staebler, D. Fitzjarrald\",\"doi\":\"10.1175/JAM2265.1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A better understanding of forest subcanopy flows is needed to evaluate their role in the horizontal movement of scalars, particularly in complex terrain. This paper describes detailed measurements of the canopy structure and its variability in both the horizontal and vertical directions at a deciduous forest in complex terrain (the Harvard Forest, Petersham, Massachusetts). The effects of the trunks and subcanopy shrubs on the flow field at each of six subcanopy array locations are quantified. The dynamics of the subcanopy flow are examined with pragmatic methods that can be implemented on a small scale with limited resources to estimate the stress divergence, buoyancy, and pressure gradient forces that drive the flow. The subcanopy flow at the Harvard Forest was driven by mechanisms other than vertical stress divergence 75% of the time. Nocturnal flows were driven predominantly by the negative buoyancy of a relatively cool layer near the forest floor. The direction of the resulting drainage flows followed the azimuth of the longest forest-floor slope. Similar results were found at a much flatter site at Borden, Ontario, Canada. There was no clear evidence of flow reversals in the subcanopy in the lee of ridges or hills at the Harvard Forest even in high wind conditions, contrary to some model predictions.\",\"PeriodicalId\":15026,\"journal\":{\"name\":\"Journal of Applied Meteorology\",\"volume\":\"38 1\",\"pages\":\"1161-1179\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2005-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"64\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Applied Meteorology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1175/JAM2265.1\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Meteorology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1175/JAM2265.1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 64

摘要

需要更好地了解森林冠层流动,以评估它们在标量水平运动中的作用,特别是在复杂地形中。本文描述了在复杂地形(哈佛森林,彼得舍姆,马萨诸塞州)的一个落叶森林的冠层结构及其在水平和垂直方向上的变化的详细测量。定量分析了树干和亚冠灌木在6个亚冠阵列位置对流场的影响。用实用的方法检查了冠层下流动的动力学,这些方法可以在有限资源的小范围内实施,以估计驱动流动的应力发散、浮力和压力梯度力。哈佛森林的冠层流动在75%的时间里是由垂直应力发散以外的机制驱动的。夜间气流主要是由森林地面附近相对较冷的层的负浮力驱动的。由此产生的排水流的方向遵循最长的森林地面斜坡的方位角。类似的结果也出现在加拿大安大略省博登一个平坦得多的地方。与一些模型预测相反,即使在大风条件下,哈佛森林山脊或山丘背风处的亚冠层也没有明显的水流逆转的证据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Measuring Canopy Structure and the Kinematics of Subcanopy Flows in Two Forests
A better understanding of forest subcanopy flows is needed to evaluate their role in the horizontal movement of scalars, particularly in complex terrain. This paper describes detailed measurements of the canopy structure and its variability in both the horizontal and vertical directions at a deciduous forest in complex terrain (the Harvard Forest, Petersham, Massachusetts). The effects of the trunks and subcanopy shrubs on the flow field at each of six subcanopy array locations are quantified. The dynamics of the subcanopy flow are examined with pragmatic methods that can be implemented on a small scale with limited resources to estimate the stress divergence, buoyancy, and pressure gradient forces that drive the flow. The subcanopy flow at the Harvard Forest was driven by mechanisms other than vertical stress divergence 75% of the time. Nocturnal flows were driven predominantly by the negative buoyancy of a relatively cool layer near the forest floor. The direction of the resulting drainage flows followed the azimuth of the longest forest-floor slope. Similar results were found at a much flatter site at Borden, Ontario, Canada. There was no clear evidence of flow reversals in the subcanopy in the lee of ridges or hills at the Harvard Forest even in high wind conditions, contrary to some model predictions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Simple Empirical Models for Estimating the Increase in the Central Pressure of Tropical Cyclones after Landfall along the Coastline of the United States A Large-Droplet Mode and Prognostic Number Concentration of Cloud Droplets in the Colorado State University Regional Atmospheric Modeling System (RAMS). Part II: Sensitivity to a Colorado Winter Snowfall Event On the Horizontal Scale of Elevation Dependence of Australian Monthly Precipitation On the Vertical Structure of Modeled and Observed Deep Convective Storms: Insights for Precipitation Retrieval and Microphysical Parameterization A Comparison of the Conservation of Number Concentration for the Continuous Collection and Vapor Diffusion Growth Equations Using One- and Two-Moment Schemes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1