V. S. P. Nayak, N. Ramchander, R. Reddy, Tapas Marandi
{"title":"可逆超3加减法器的分析与设计","authors":"V. S. P. Nayak, N. Ramchander, R. Reddy, Tapas Marandi","doi":"10.1109/RTEICT.2016.7807849","DOIUrl":null,"url":null,"abstract":"Power is one of the most important design parameter after speed, in integrated circuit. One of the basic fundamental component in such circuit is adder and subtractor. In order to optimize such circuits there is need of designing efficient and low power fundamental blocks. As per the Launder's principle, KTln2 heat is dissipated if there is any loss in bit. Excess-3 code is one of the sequential codes used widely in digital circuits for performing arithmetic operations. Since conventional excess-3 adder and excess-3 subtractor both circuits designed in irreversible logic observe large amount of leakage power. By keeping this as main point, this paper explains the process of designing 4-bit excess-3 adder and subtactor in 90nm technology and also worked to combine both individual circuits to design as a single circuit where it can perform addition and subtraction on excess-3 coded bits simultaneously. This paper also gives mathematical analysis of n-bit proposed circuit in terms of number of gates, quantum cost, garbage output, power and delay. Finally simulation results are obtained by using cadence virtuoso and observed power dissipation for proposed circuit is 221uWIn this paper detail simulation results along with the power graph submitted.","PeriodicalId":6527,"journal":{"name":"2016 IEEE International Conference on Recent Trends in Electronics, Information & Communication Technology (RTEICT)","volume":"10 1","pages":"397-400"},"PeriodicalIF":0.0000,"publicationDate":"2016-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Analysis and design of reversible excess-3 adder and subtractor\",\"authors\":\"V. S. P. Nayak, N. Ramchander, R. Reddy, Tapas Marandi\",\"doi\":\"10.1109/RTEICT.2016.7807849\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Power is one of the most important design parameter after speed, in integrated circuit. One of the basic fundamental component in such circuit is adder and subtractor. In order to optimize such circuits there is need of designing efficient and low power fundamental blocks. As per the Launder's principle, KTln2 heat is dissipated if there is any loss in bit. Excess-3 code is one of the sequential codes used widely in digital circuits for performing arithmetic operations. Since conventional excess-3 adder and excess-3 subtractor both circuits designed in irreversible logic observe large amount of leakage power. By keeping this as main point, this paper explains the process of designing 4-bit excess-3 adder and subtactor in 90nm technology and also worked to combine both individual circuits to design as a single circuit where it can perform addition and subtraction on excess-3 coded bits simultaneously. This paper also gives mathematical analysis of n-bit proposed circuit in terms of number of gates, quantum cost, garbage output, power and delay. Finally simulation results are obtained by using cadence virtuoso and observed power dissipation for proposed circuit is 221uWIn this paper detail simulation results along with the power graph submitted.\",\"PeriodicalId\":6527,\"journal\":{\"name\":\"2016 IEEE International Conference on Recent Trends in Electronics, Information & Communication Technology (RTEICT)\",\"volume\":\"10 1\",\"pages\":\"397-400\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-05-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE International Conference on Recent Trends in Electronics, Information & Communication Technology (RTEICT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/RTEICT.2016.7807849\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE International Conference on Recent Trends in Electronics, Information & Communication Technology (RTEICT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RTEICT.2016.7807849","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Analysis and design of reversible excess-3 adder and subtractor
Power is one of the most important design parameter after speed, in integrated circuit. One of the basic fundamental component in such circuit is adder and subtractor. In order to optimize such circuits there is need of designing efficient and low power fundamental blocks. As per the Launder's principle, KTln2 heat is dissipated if there is any loss in bit. Excess-3 code is one of the sequential codes used widely in digital circuits for performing arithmetic operations. Since conventional excess-3 adder and excess-3 subtractor both circuits designed in irreversible logic observe large amount of leakage power. By keeping this as main point, this paper explains the process of designing 4-bit excess-3 adder and subtactor in 90nm technology and also worked to combine both individual circuits to design as a single circuit where it can perform addition and subtraction on excess-3 coded bits simultaneously. This paper also gives mathematical analysis of n-bit proposed circuit in terms of number of gates, quantum cost, garbage output, power and delay. Finally simulation results are obtained by using cadence virtuoso and observed power dissipation for proposed circuit is 221uWIn this paper detail simulation results along with the power graph submitted.