化学动力学神经常微分方程在两两混合搅拌反应器中的性能评价

S. Bansude, Farhad Imani, R. Sheikhi
{"title":"化学动力学神经常微分方程在两两混合搅拌反应器中的性能评价","authors":"S. Bansude, Farhad Imani, R. Sheikhi","doi":"10.1115/1.4056476","DOIUrl":null,"url":null,"abstract":"\n The present study aims to assess the potential of the neural ordinary differential equations (NODE) network for reliable and computationally efficient implementation of chemistry in combustion simulations. Investigations are performed using a hydrogen-air pairwise mixing stirred reactor (PMSR). The PMSR is a zero-dimensional case affordable to study combustion chemistry entailing a similar numerical solution procedure as probability density function methods for turbulent combustion simulations. A systematic approach is presented to apply the NODE, solely trained on canonical constant pressure homogeneous reactor data, to predict complex chemistry and mixing interactions in PMSR. The reactor involves combustion of hydrogen in air described by a finite-rate mechanism with 9 chemical species and 21 reaction steps. The NODE network is shown to accurately capture the evolution of thermochemical variables for different mixing and chemical timescales. It also exhibits a significant reduction in numerical stiffness resulting in improving the computational efficiency and enabling the use of explicit solvers for the integration of chemical kinetics. The assessment results based on PMSR show that compared to direct integration of detailed kinetics, the NODE can achieve significant computational time speedup for a comparable accuracy.","PeriodicalId":8652,"journal":{"name":"ASME Open Journal of Engineering","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Performance Assessment of Chemical Kinetics Neural Ordinary Differential Equations in Pairwise Mixing Stirred Reactor\",\"authors\":\"S. Bansude, Farhad Imani, R. Sheikhi\",\"doi\":\"10.1115/1.4056476\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n The present study aims to assess the potential of the neural ordinary differential equations (NODE) network for reliable and computationally efficient implementation of chemistry in combustion simulations. Investigations are performed using a hydrogen-air pairwise mixing stirred reactor (PMSR). The PMSR is a zero-dimensional case affordable to study combustion chemistry entailing a similar numerical solution procedure as probability density function methods for turbulent combustion simulations. A systematic approach is presented to apply the NODE, solely trained on canonical constant pressure homogeneous reactor data, to predict complex chemistry and mixing interactions in PMSR. The reactor involves combustion of hydrogen in air described by a finite-rate mechanism with 9 chemical species and 21 reaction steps. The NODE network is shown to accurately capture the evolution of thermochemical variables for different mixing and chemical timescales. It also exhibits a significant reduction in numerical stiffness resulting in improving the computational efficiency and enabling the use of explicit solvers for the integration of chemical kinetics. The assessment results based on PMSR show that compared to direct integration of detailed kinetics, the NODE can achieve significant computational time speedup for a comparable accuracy.\",\"PeriodicalId\":8652,\"journal\":{\"name\":\"ASME Open Journal of Engineering\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ASME Open Journal of Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/1.4056476\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ASME Open Journal of Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/1.4056476","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

本研究旨在评估神经常微分方程(NODE)网络在燃烧模拟中的可靠和计算效率实现的潜力。研究使用氢-空气两两混合搅拌反应器(PMSR)进行。PMSR是研究燃烧化学的零维案例,需要类似于湍流燃烧模拟的概率密度函数方法的数值求解过程。本文提出了一种系统的方法来应用仅在标准恒压均匀反应器数据上训练的节点来预测PMSR中复杂的化学和混合相互作用。反应器涉及氢在空气中的燃烧,用有限速率机制描述,有9种化学物质和21个反应步骤。NODE网络被证明可以准确地捕捉不同混合和化学时间尺度下热化学变量的演变。它还显示了数值刚度的显著降低,从而提高了计算效率,并使使用显式求解器集成化学动力学成为可能。基于PMSR的评估结果表明,与详细动力学的直接积分相比,NODE可以在相当的精度下实现显著的计算时间加速。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Performance Assessment of Chemical Kinetics Neural Ordinary Differential Equations in Pairwise Mixing Stirred Reactor
The present study aims to assess the potential of the neural ordinary differential equations (NODE) network for reliable and computationally efficient implementation of chemistry in combustion simulations. Investigations are performed using a hydrogen-air pairwise mixing stirred reactor (PMSR). The PMSR is a zero-dimensional case affordable to study combustion chemistry entailing a similar numerical solution procedure as probability density function methods for turbulent combustion simulations. A systematic approach is presented to apply the NODE, solely trained on canonical constant pressure homogeneous reactor data, to predict complex chemistry and mixing interactions in PMSR. The reactor involves combustion of hydrogen in air described by a finite-rate mechanism with 9 chemical species and 21 reaction steps. The NODE network is shown to accurately capture the evolution of thermochemical variables for different mixing and chemical timescales. It also exhibits a significant reduction in numerical stiffness resulting in improving the computational efficiency and enabling the use of explicit solvers for the integration of chemical kinetics. The assessment results based on PMSR show that compared to direct integration of detailed kinetics, the NODE can achieve significant computational time speedup for a comparable accuracy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Current Trends and Innovations in Enhancing the Aerodynamic Performance of Small-Scale, Horizontal Axis Wind Turbines: A Review Effect of Filament Color and Fused Deposition Modeling/Fused Filament Fabrication Process on the Development of Bistability in Switchable Bistable Squares Thermodynamic Analysis of Comprehensive Performance of Carbon Dioxide(R744) and Its Mixture With Ethane(R170) Used in Refrigeration and Heating System at Low Evaporation Temperature Current Status and Emerging Techniques for Measuring the Dielectric Properties of Biological Tissues Replacing All Fossil Fuels With Nuclear-Enabled Hydrogen, Cellulosic Hydrocarbon Biofuels, and Dispatchable Electricity
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1