Nelder-Mead搜索算法的高效实现

Saša Singer, Sanja Singer
{"title":"Nelder-Mead搜索算法的高效实现","authors":"Saša Singer,&nbsp;Sanja Singer","doi":"10.1002/anac.200410015","DOIUrl":null,"url":null,"abstract":"<p>The Nelder–Mead or simplex search algorithm is one of the best known algorithms for unconstrained optimization of non–smooth functions. Even though the basic algorithm is quite simple, it is implemented in many different ways. Apart from some minor computational details, the main difference between various implementations lies in the selection of convergence (or termination) tests, which are used to break the iteration process. A fairly simple efficiency analysis of each iteration step reveals a potential computational bottleneck in the domain convergence test. To be efficient, such a test has to be sublinear in the number of vertices of the working simplex. We have tested some of the most common implementations of the Nelder–Mead algorithm, and none of them is efficient in this sense.</p><p>Therefore, we propose a simple and efficient domain convergence test and discuss some of its properties. This test is based on tracking the volume of the working simplex throughout the iterations. Similar termination tests can also be applied in some other simplex–based direct search methods. (© 2004 WILEY-VCH Verlag GmbH &amp; Co. KGaA, Weinheim)</p>","PeriodicalId":100108,"journal":{"name":"Applied Numerical Analysis & Computational Mathematics","volume":"1 2","pages":"524-534"},"PeriodicalIF":0.0000,"publicationDate":"2004-12-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1002/anac.200410015","citationCount":"57","resultStr":"{\"title\":\"Efficient Implementation of the Nelder–Mead Search Algorithm\",\"authors\":\"Saša Singer,&nbsp;Sanja Singer\",\"doi\":\"10.1002/anac.200410015\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The Nelder–Mead or simplex search algorithm is one of the best known algorithms for unconstrained optimization of non–smooth functions. Even though the basic algorithm is quite simple, it is implemented in many different ways. Apart from some minor computational details, the main difference between various implementations lies in the selection of convergence (or termination) tests, which are used to break the iteration process. A fairly simple efficiency analysis of each iteration step reveals a potential computational bottleneck in the domain convergence test. To be efficient, such a test has to be sublinear in the number of vertices of the working simplex. We have tested some of the most common implementations of the Nelder–Mead algorithm, and none of them is efficient in this sense.</p><p>Therefore, we propose a simple and efficient domain convergence test and discuss some of its properties. This test is based on tracking the volume of the working simplex throughout the iterations. Similar termination tests can also be applied in some other simplex–based direct search methods. (© 2004 WILEY-VCH Verlag GmbH &amp; Co. KGaA, Weinheim)</p>\",\"PeriodicalId\":100108,\"journal\":{\"name\":\"Applied Numerical Analysis & Computational Mathematics\",\"volume\":\"1 2\",\"pages\":\"524-534\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2004-12-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1002/anac.200410015\",\"citationCount\":\"57\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Numerical Analysis & Computational Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/anac.200410015\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Numerical Analysis & Computational Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/anac.200410015","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 57

摘要

Nelder-Mead或单纯形搜索算法是最著名的非光滑函数无约束优化算法之一。尽管基本算法非常简单,但它有许多不同的实现方式。除了一些小的计算细节之外,各种实现之间的主要区别在于收敛(或终止)测试的选择,这些测试用于中断迭代过程。对每个迭代步骤的相当简单的效率分析揭示了域收敛测试中潜在的计算瓶颈。为了提高效率,这样的测试必须在工作单纯形的顶点数量上是次线性的。我们已经测试了一些最常见的Nelder-Mead算法的实现,从这个意义上讲,它们都不是有效的。因此,我们提出了一种简单有效的域收敛检验方法,并讨论了它的一些性质。该测试基于跟踪整个迭代过程中工作单纯形的体积。类似的终止测试也可以应用于其他一些基于simplex的直接搜索方法中。(©2004 WILEY-VCH Verlag GmbH &KGaA公司,Weinheim)
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Efficient Implementation of the Nelder–Mead Search Algorithm

The Nelder–Mead or simplex search algorithm is one of the best known algorithms for unconstrained optimization of non–smooth functions. Even though the basic algorithm is quite simple, it is implemented in many different ways. Apart from some minor computational details, the main difference between various implementations lies in the selection of convergence (or termination) tests, which are used to break the iteration process. A fairly simple efficiency analysis of each iteration step reveals a potential computational bottleneck in the domain convergence test. To be efficient, such a test has to be sublinear in the number of vertices of the working simplex. We have tested some of the most common implementations of the Nelder–Mead algorithm, and none of them is efficient in this sense.

Therefore, we propose a simple and efficient domain convergence test and discuss some of its properties. This test is based on tracking the volume of the working simplex throughout the iterations. Similar termination tests can also be applied in some other simplex–based direct search methods. (© 2004 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Estimation of the Greatest Common Divisor of many polynomials using hybrid computations performed by the ERES method Analysis and Application of an Orthogonal Nodal Basis on Triangles for Discontinuous Spectral Element Methods Analytic Evaluation of Collocation Integrals for the Radiosity Equation A Symplectic Trigonometrically Fitted Modified Partitioned Runge-Kutta Method for the Numerical Integration of Orbital Problems Solving Hyperbolic PDEs in MATLAB
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1