J. C. Teze, José Paredes, Maria Vanina Martinez, Gerardo I. Simari
{"title":"在本体驱动的社会技术系统中,以用户为中心的工程解释查询答案","authors":"J. C. Teze, José Paredes, Maria Vanina Martinez, Gerardo I. Simari","doi":"10.3233/sw-233297","DOIUrl":null,"url":null,"abstract":"The role of explanations in intelligent systems has in the last few years entered the spotlight as AI-based solutions appear in an ever-growing set of applications. Though data-driven (or machine learning) techniques are often used as examples of how opaque (also called black box) approaches can lead to problems such as bias and general lack of explainability and interpretability, in reality these features are difficult to tame in general, even for approaches that are based on tools typically considered to be more amenable, like knowledge-based formalisms. In this paper, we continue a line of research and development towards building tools that facilitate the implementation of explainable and interpretable hybrid intelligent socio-technical systems, focusing on features that users can leverage to build explanations to their queries. In particular, we present the implementation of a recently-proposed application framework (and make available its source code) for developing such systems, and explore user-centered mechanisms for building explanations based both on the kinds of explanations required (such as counterfactual, contextual, etc.) and the inputs used for building them (coming from various sources, such as the knowledge base and lower-level data-driven modules). In order to validate our approach, we develop two use cases, one as a running example for detecting hate speech in social platforms and the other as an extension that also contemplates cyberbullying scenarios.","PeriodicalId":48694,"journal":{"name":"Semantic Web","volume":"50 1","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2023-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Engineering user-centered explanations to query answers in ontology-driven socio-technical systems\",\"authors\":\"J. C. Teze, José Paredes, Maria Vanina Martinez, Gerardo I. Simari\",\"doi\":\"10.3233/sw-233297\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The role of explanations in intelligent systems has in the last few years entered the spotlight as AI-based solutions appear in an ever-growing set of applications. Though data-driven (or machine learning) techniques are often used as examples of how opaque (also called black box) approaches can lead to problems such as bias and general lack of explainability and interpretability, in reality these features are difficult to tame in general, even for approaches that are based on tools typically considered to be more amenable, like knowledge-based formalisms. In this paper, we continue a line of research and development towards building tools that facilitate the implementation of explainable and interpretable hybrid intelligent socio-technical systems, focusing on features that users can leverage to build explanations to their queries. In particular, we present the implementation of a recently-proposed application framework (and make available its source code) for developing such systems, and explore user-centered mechanisms for building explanations based both on the kinds of explanations required (such as counterfactual, contextual, etc.) and the inputs used for building them (coming from various sources, such as the knowledge base and lower-level data-driven modules). In order to validate our approach, we develop two use cases, one as a running example for detecting hate speech in social platforms and the other as an extension that also contemplates cyberbullying scenarios.\",\"PeriodicalId\":48694,\"journal\":{\"name\":\"Semantic Web\",\"volume\":\"50 1\",\"pages\":\"\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2023-05-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Semantic Web\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.3233/sw-233297\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Semantic Web","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.3233/sw-233297","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Engineering user-centered explanations to query answers in ontology-driven socio-technical systems
The role of explanations in intelligent systems has in the last few years entered the spotlight as AI-based solutions appear in an ever-growing set of applications. Though data-driven (or machine learning) techniques are often used as examples of how opaque (also called black box) approaches can lead to problems such as bias and general lack of explainability and interpretability, in reality these features are difficult to tame in general, even for approaches that are based on tools typically considered to be more amenable, like knowledge-based formalisms. In this paper, we continue a line of research and development towards building tools that facilitate the implementation of explainable and interpretable hybrid intelligent socio-technical systems, focusing on features that users can leverage to build explanations to their queries. In particular, we present the implementation of a recently-proposed application framework (and make available its source code) for developing such systems, and explore user-centered mechanisms for building explanations based both on the kinds of explanations required (such as counterfactual, contextual, etc.) and the inputs used for building them (coming from various sources, such as the knowledge base and lower-level data-driven modules). In order to validate our approach, we develop two use cases, one as a running example for detecting hate speech in social platforms and the other as an extension that also contemplates cyberbullying scenarios.
Semantic WebCOMPUTER SCIENCE, ARTIFICIAL INTELLIGENCEC-COMPUTER SCIENCE, INFORMATION SYSTEMS
CiteScore
8.30
自引率
6.70%
发文量
68
期刊介绍:
The journal Semantic Web – Interoperability, Usability, Applicability brings together researchers from various fields which share the vision and need for more effective and meaningful ways to share information across agents and services on the future internet and elsewhere. As such, Semantic Web technologies shall support the seamless integration of data, on-the-fly composition and interoperation of Web services, as well as more intuitive search engines. The semantics – or meaning – of information, however, cannot be defined without a context, which makes personalization, trust, and provenance core topics for Semantic Web research. New retrieval paradigms, user interfaces, and visualization techniques have to unleash the power of the Semantic Web and at the same time hide its complexity from the user. Based on this vision, the journal welcomes contributions ranging from theoretical and foundational research over methods and tools to descriptions of concrete ontologies and applications in all areas. We especially welcome papers which add a social, spatial, and temporal dimension to Semantic Web research, as well as application-oriented papers making use of formal semantics.