{"title":"化学燃料驱动的瞬态自组装","authors":"Ling Wang , Jin Yuan , Jingcheng Hao","doi":"10.1016/j.chphma.2023.06.002","DOIUrl":null,"url":null,"abstract":"<div><p>Self-assembly has been extensively studied in chemistry, physics, biology, and materials engineering and has become an important “bottom-up” approach in creating intriguing structures for different applications. Using dissipative self-assembly to construct fuel-dependent, energy-consuming, and dynamic nonequilibrium systems is important for developing intelligent life-like materials. Furthermore, dissipative self-assembly has become a research hotspot in materials chemistry, biomedical science, environmental chemistry, and physical chemistry. An in-depth understanding of the process and mechanism provides useful insights to the researchers for developing materials using dissipative self-assembly and also helps guide future innovation in material fabrication. This critical review comprehensively analyzes various chemical fuel input and energy consumption mechanisms, supported by numerous illustrative examples. Versatile transient assemblies, including gels, vesicles, micelles, and nanoparticle aggregates, have been systematically studied in our and other laboratories. The relationship between the molecular structure of precursors and temporal assemblies in dissipative self-assemblies is discussed from the perspective of physical chemistry. Using dissipative self-assembly methods to construct functional assemblies provides important implications for constructing high-energy, nonequilibrium, and intelligent functional materials.</p></div>","PeriodicalId":100236,"journal":{"name":"ChemPhysMater","volume":"3 1","pages":"Pages 1-23"},"PeriodicalIF":0.0000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2772571523000372/pdfft?md5=42bec10c071a502f3fc0034310b85116&pid=1-s2.0-S2772571523000372-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Transient self-assembly driven by chemical fuels\",\"authors\":\"Ling Wang , Jin Yuan , Jingcheng Hao\",\"doi\":\"10.1016/j.chphma.2023.06.002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Self-assembly has been extensively studied in chemistry, physics, biology, and materials engineering and has become an important “bottom-up” approach in creating intriguing structures for different applications. Using dissipative self-assembly to construct fuel-dependent, energy-consuming, and dynamic nonequilibrium systems is important for developing intelligent life-like materials. Furthermore, dissipative self-assembly has become a research hotspot in materials chemistry, biomedical science, environmental chemistry, and physical chemistry. An in-depth understanding of the process and mechanism provides useful insights to the researchers for developing materials using dissipative self-assembly and also helps guide future innovation in material fabrication. This critical review comprehensively analyzes various chemical fuel input and energy consumption mechanisms, supported by numerous illustrative examples. Versatile transient assemblies, including gels, vesicles, micelles, and nanoparticle aggregates, have been systematically studied in our and other laboratories. The relationship between the molecular structure of precursors and temporal assemblies in dissipative self-assemblies is discussed from the perspective of physical chemistry. Using dissipative self-assembly methods to construct functional assemblies provides important implications for constructing high-energy, nonequilibrium, and intelligent functional materials.</p></div>\",\"PeriodicalId\":100236,\"journal\":{\"name\":\"ChemPhysMater\",\"volume\":\"3 1\",\"pages\":\"Pages 1-23\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2772571523000372/pdfft?md5=42bec10c071a502f3fc0034310b85116&pid=1-s2.0-S2772571523000372-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ChemPhysMater\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2772571523000372\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ChemPhysMater","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772571523000372","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Self-assembly has been extensively studied in chemistry, physics, biology, and materials engineering and has become an important “bottom-up” approach in creating intriguing structures for different applications. Using dissipative self-assembly to construct fuel-dependent, energy-consuming, and dynamic nonequilibrium systems is important for developing intelligent life-like materials. Furthermore, dissipative self-assembly has become a research hotspot in materials chemistry, biomedical science, environmental chemistry, and physical chemistry. An in-depth understanding of the process and mechanism provides useful insights to the researchers for developing materials using dissipative self-assembly and also helps guide future innovation in material fabrication. This critical review comprehensively analyzes various chemical fuel input and energy consumption mechanisms, supported by numerous illustrative examples. Versatile transient assemblies, including gels, vesicles, micelles, and nanoparticle aggregates, have been systematically studied in our and other laboratories. The relationship between the molecular structure of precursors and temporal assemblies in dissipative self-assemblies is discussed from the perspective of physical chemistry. Using dissipative self-assembly methods to construct functional assemblies provides important implications for constructing high-energy, nonequilibrium, and intelligent functional materials.