{"title":"二氧化锰纳米棒修饰网印电极电化学测定食品中苏丹红染料","authors":"S. A. Ahmadi, P. Mohammadzadeh Jahani","doi":"10.5599/jese.1415","DOIUrl":null,"url":null,"abstract":"A novel MnO2 nanorods modified screen-printed electrode was fabricated and used as a voltammetric sensor for Sudan determination. MnO2 nanorods were characterized using Field emission-scanning electron microscopy (FE-SEM). Electrochemical measurements were performed using cyclic voltammetry (CV), linear sweep voltammetry (LSV), differential pulse voltammetry (DPV), and chronoammperometry (CA). The MnO2 nanorods on the electrode surface act as an excellent catalyst for the Sudan oxidation reaction. Our modified electrode presents good electrocatalytic activity toward Sudan, a short response time of <10 s, a low detection limit of around 0.08 µM, and linear detection range from 0.25 to 300.0 µM.","PeriodicalId":15660,"journal":{"name":"Journal of Electrochemical Science and Engineering","volume":"19 1","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2022-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"MnO2 nanorods modified screen-printed electrode for the electrochemical determination of Sudan dye in food sample\",\"authors\":\"S. A. Ahmadi, P. Mohammadzadeh Jahani\",\"doi\":\"10.5599/jese.1415\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A novel MnO2 nanorods modified screen-printed electrode was fabricated and used as a voltammetric sensor for Sudan determination. MnO2 nanorods were characterized using Field emission-scanning electron microscopy (FE-SEM). Electrochemical measurements were performed using cyclic voltammetry (CV), linear sweep voltammetry (LSV), differential pulse voltammetry (DPV), and chronoammperometry (CA). The MnO2 nanorods on the electrode surface act as an excellent catalyst for the Sudan oxidation reaction. Our modified electrode presents good electrocatalytic activity toward Sudan, a short response time of <10 s, a low detection limit of around 0.08 µM, and linear detection range from 0.25 to 300.0 µM.\",\"PeriodicalId\":15660,\"journal\":{\"name\":\"Journal of Electrochemical Science and Engineering\",\"volume\":\"19 1\",\"pages\":\"\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2022-07-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Electrochemical Science and Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5599/jese.1415\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ELECTROCHEMISTRY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Electrochemical Science and Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5599/jese.1415","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ELECTROCHEMISTRY","Score":null,"Total":0}
MnO2 nanorods modified screen-printed electrode for the electrochemical determination of Sudan dye in food sample
A novel MnO2 nanorods modified screen-printed electrode was fabricated and used as a voltammetric sensor for Sudan determination. MnO2 nanorods were characterized using Field emission-scanning electron microscopy (FE-SEM). Electrochemical measurements were performed using cyclic voltammetry (CV), linear sweep voltammetry (LSV), differential pulse voltammetry (DPV), and chronoammperometry (CA). The MnO2 nanorods on the electrode surface act as an excellent catalyst for the Sudan oxidation reaction. Our modified electrode presents good electrocatalytic activity toward Sudan, a short response time of <10 s, a low detection limit of around 0.08 µM, and linear detection range from 0.25 to 300.0 µM.