{"title":"Fe和Co共掺杂ZnO的磁性和光学研究","authors":"P. Vanga, M. Ashok","doi":"10.1109/ICANMEET.2013.6609264","DOIUrl":null,"url":null,"abstract":"Fe and Co co-doped ZnO nanoparticles were synthesized by hydrothermal method. Limit of substitution was identified using XRD. Magnetic measurements at room temperature for doped samples showed paramagnetic and ferromagnetic in nature. The reflectance spectra exhibited the absorption peaks corresponding to both dopant and host ions. Emission spectra show defect related peaks, suppression of visible spectra peaks is observed in doped samples.","PeriodicalId":13708,"journal":{"name":"International Conference on Advanced Nanomaterials & Emerging Engineering Technologies","volume":"33 1","pages":"154-156"},"PeriodicalIF":0.0000,"publicationDate":"2013-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Magnetic and optical studies of Fe and Co co-doped ZnO\",\"authors\":\"P. Vanga, M. Ashok\",\"doi\":\"10.1109/ICANMEET.2013.6609264\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Fe and Co co-doped ZnO nanoparticles were synthesized by hydrothermal method. Limit of substitution was identified using XRD. Magnetic measurements at room temperature for doped samples showed paramagnetic and ferromagnetic in nature. The reflectance spectra exhibited the absorption peaks corresponding to both dopant and host ions. Emission spectra show defect related peaks, suppression of visible spectra peaks is observed in doped samples.\",\"PeriodicalId\":13708,\"journal\":{\"name\":\"International Conference on Advanced Nanomaterials & Emerging Engineering Technologies\",\"volume\":\"33 1\",\"pages\":\"154-156\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-07-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Conference on Advanced Nanomaterials & Emerging Engineering Technologies\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICANMEET.2013.6609264\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Advanced Nanomaterials & Emerging Engineering Technologies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICANMEET.2013.6609264","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Magnetic and optical studies of Fe and Co co-doped ZnO
Fe and Co co-doped ZnO nanoparticles were synthesized by hydrothermal method. Limit of substitution was identified using XRD. Magnetic measurements at room temperature for doped samples showed paramagnetic and ferromagnetic in nature. The reflectance spectra exhibited the absorption peaks corresponding to both dopant and host ions. Emission spectra show defect related peaks, suppression of visible spectra peaks is observed in doped samples.