Yao-Yu Li, Chi-Yu Li, Wei-Han Chen, Chia-Jui Yeh, Kuochen Wang
{"title":"在三波段无线系统中实现WiGig/WiFi的无缝切换","authors":"Yao-Yu Li, Chi-Yu Li, Wei-Han Chen, Chia-Jui Yeh, Kuochen Wang","doi":"10.1109/ICNP.2017.8117571","DOIUrl":null,"url":null,"abstract":"WiGig enables wireless multi-gigabit communication over 60GHz band. However, its usage scenarios may be constrained by two major limitations: line-of-sight propagation and very short transmission range. We seek to boost the WiGig's usability by using WiFi to complement its limitations in tri-band (2.4/5/60GHz) wireless systems. Our goal is to let a tri-band client have multimedia services at the WiGig's very high speed without any hassle. When the WiGig link is down or performs bad, not only can the client temporarily handover to WiFi without service interruption, but its ongoing multimedia services can also adapt to the WiFi's slower link. Though the IEEE 802.11ad standard has proposed an FST (Fast Session Transfer) mechanism to support handover operations at the link layer, it does not satisfy our goal due to two reasons. First, it does not specify when to perform WiGig/WiFi handovers. Second, it is not application-aware to achieve the service adaptation. To this end, we design and implement an application-aware, seamless WiGig/WiFi handover solution above the network layer. It ensures timely handover trigger for the WiGig's abrupt link interruption, keeps service continuity during handovers, and adapts multimedia service qualities to different WiGig/WiFi links. Our demo confirms its viability. We show that a video streaming service at the client is not interrupted during WiGig/WiFi handovers, which are triggered by mobility or the WiGig's signal blockage, but smoothly switches between different resolutions according to different links.","PeriodicalId":6462,"journal":{"name":"2017 IEEE 25th International Conference on Network Protocols (ICNP)","volume":"41 1","pages":"1-2"},"PeriodicalIF":0.0000,"publicationDate":"2017-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Enabling seamless WiGig/WiFi handovers in tri-band wireless systems\",\"authors\":\"Yao-Yu Li, Chi-Yu Li, Wei-Han Chen, Chia-Jui Yeh, Kuochen Wang\",\"doi\":\"10.1109/ICNP.2017.8117571\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"WiGig enables wireless multi-gigabit communication over 60GHz band. However, its usage scenarios may be constrained by two major limitations: line-of-sight propagation and very short transmission range. We seek to boost the WiGig's usability by using WiFi to complement its limitations in tri-band (2.4/5/60GHz) wireless systems. Our goal is to let a tri-band client have multimedia services at the WiGig's very high speed without any hassle. When the WiGig link is down or performs bad, not only can the client temporarily handover to WiFi without service interruption, but its ongoing multimedia services can also adapt to the WiFi's slower link. Though the IEEE 802.11ad standard has proposed an FST (Fast Session Transfer) mechanism to support handover operations at the link layer, it does not satisfy our goal due to two reasons. First, it does not specify when to perform WiGig/WiFi handovers. Second, it is not application-aware to achieve the service adaptation. To this end, we design and implement an application-aware, seamless WiGig/WiFi handover solution above the network layer. It ensures timely handover trigger for the WiGig's abrupt link interruption, keeps service continuity during handovers, and adapts multimedia service qualities to different WiGig/WiFi links. Our demo confirms its viability. We show that a video streaming service at the client is not interrupted during WiGig/WiFi handovers, which are triggered by mobility or the WiGig's signal blockage, but smoothly switches between different resolutions according to different links.\",\"PeriodicalId\":6462,\"journal\":{\"name\":\"2017 IEEE 25th International Conference on Network Protocols (ICNP)\",\"volume\":\"41 1\",\"pages\":\"1-2\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE 25th International Conference on Network Protocols (ICNP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICNP.2017.8117571\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE 25th International Conference on Network Protocols (ICNP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICNP.2017.8117571","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Enabling seamless WiGig/WiFi handovers in tri-band wireless systems
WiGig enables wireless multi-gigabit communication over 60GHz band. However, its usage scenarios may be constrained by two major limitations: line-of-sight propagation and very short transmission range. We seek to boost the WiGig's usability by using WiFi to complement its limitations in tri-band (2.4/5/60GHz) wireless systems. Our goal is to let a tri-band client have multimedia services at the WiGig's very high speed without any hassle. When the WiGig link is down or performs bad, not only can the client temporarily handover to WiFi without service interruption, but its ongoing multimedia services can also adapt to the WiFi's slower link. Though the IEEE 802.11ad standard has proposed an FST (Fast Session Transfer) mechanism to support handover operations at the link layer, it does not satisfy our goal due to two reasons. First, it does not specify when to perform WiGig/WiFi handovers. Second, it is not application-aware to achieve the service adaptation. To this end, we design and implement an application-aware, seamless WiGig/WiFi handover solution above the network layer. It ensures timely handover trigger for the WiGig's abrupt link interruption, keeps service continuity during handovers, and adapts multimedia service qualities to different WiGig/WiFi links. Our demo confirms its viability. We show that a video streaming service at the client is not interrupted during WiGig/WiFi handovers, which are triggered by mobility or the WiGig's signal blockage, but smoothly switches between different resolutions according to different links.