萨赫勒地区的降雨量估算。第一部分:错误函数

Abdou Ali, T. Lebel, A. Amani
{"title":"萨赫勒地区的降雨量估算。第一部分:错误函数","authors":"Abdou Ali, T. Lebel, A. Amani","doi":"10.1175/JAM2304.1","DOIUrl":null,"url":null,"abstract":"Rainfall estimation in semiarid regions remains a challenging issue because it displays great spatial and temporal variability and networks available for monitoring are often of low density. This is especially the case in the Sahel, a region of 3 million km2 where the life of populations is still heavily dependent on rain for agriculture. Whatever the data and sensors available for rainfall estimation—including satellite IR and microwave data and possibly weather radar systems—it is necessary to define objective error functions to be used in comparing various rainfall products. This first of two papers presents a theoretical framework for the development of such an error function and the optimization of its parameters for the Sahel. A range of time scales—from rain event to annual—are considered, using two datasets covering two different spatial scales. The mesoscale [Estimation des Pluies par Satellite (EPSAT)-Niger (E-N)] is documented over a period of 13 yr (1990–2002) on an area of 16 000 km2 covered by 30 recording rain gauges; the regional scale is documented by the Centre Regional Agrometeorologie–Hydrologie–Meteorologie (AGRHYMET) (CRA) dataset, with an annual average of between 600 and 650 rain gauges available over a period of 8 yr. The data analysis showed that the spatial structure of the Sahelian rain fields is markedly anisotropic, nonstationary, and dominated by the nesting of two elementary structures. A cross-validation procedure on point rainfall values leads to the identification of an optimal interpolation algorithm. Using the error variances computed from this algorithm on 1° × 1° and 2.5° × 2.5° cells, an error function is derived, allowing the calculation of standard errors of estimation for the region. Typical standard errors for monthly rainfall estimation are 11% (10%) for a 10-station network on a 2.5° × 2.5° (1° × 1°) grid, and 40% (30%) for a single station on a 2.5° × 2.5° (1° × 1°) grid. In a companion paper, this error function is used to investigate the differences between satellite rainfall products and how they compare with ground-based estimates.","PeriodicalId":15026,"journal":{"name":"Journal of Applied Meteorology","volume":"abs/2111.04635 1","pages":"1691-1706"},"PeriodicalIF":0.0000,"publicationDate":"2005-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"56","resultStr":"{\"title\":\"Rainfall Estimation in the Sahel. Part I: Error Function\",\"authors\":\"Abdou Ali, T. Lebel, A. Amani\",\"doi\":\"10.1175/JAM2304.1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Rainfall estimation in semiarid regions remains a challenging issue because it displays great spatial and temporal variability and networks available for monitoring are often of low density. This is especially the case in the Sahel, a region of 3 million km2 where the life of populations is still heavily dependent on rain for agriculture. Whatever the data and sensors available for rainfall estimation—including satellite IR and microwave data and possibly weather radar systems—it is necessary to define objective error functions to be used in comparing various rainfall products. This first of two papers presents a theoretical framework for the development of such an error function and the optimization of its parameters for the Sahel. A range of time scales—from rain event to annual—are considered, using two datasets covering two different spatial scales. The mesoscale [Estimation des Pluies par Satellite (EPSAT)-Niger (E-N)] is documented over a period of 13 yr (1990–2002) on an area of 16 000 km2 covered by 30 recording rain gauges; the regional scale is documented by the Centre Regional Agrometeorologie–Hydrologie–Meteorologie (AGRHYMET) (CRA) dataset, with an annual average of between 600 and 650 rain gauges available over a period of 8 yr. The data analysis showed that the spatial structure of the Sahelian rain fields is markedly anisotropic, nonstationary, and dominated by the nesting of two elementary structures. A cross-validation procedure on point rainfall values leads to the identification of an optimal interpolation algorithm. Using the error variances computed from this algorithm on 1° × 1° and 2.5° × 2.5° cells, an error function is derived, allowing the calculation of standard errors of estimation for the region. Typical standard errors for monthly rainfall estimation are 11% (10%) for a 10-station network on a 2.5° × 2.5° (1° × 1°) grid, and 40% (30%) for a single station on a 2.5° × 2.5° (1° × 1°) grid. In a companion paper, this error function is used to investigate the differences between satellite rainfall products and how they compare with ground-based estimates.\",\"PeriodicalId\":15026,\"journal\":{\"name\":\"Journal of Applied Meteorology\",\"volume\":\"abs/2111.04635 1\",\"pages\":\"1691-1706\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2005-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"56\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Applied Meteorology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1175/JAM2304.1\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Meteorology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1175/JAM2304.1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 56

摘要

半干旱地区的降雨估计仍然是一个具有挑战性的问题,因为它显示出很大的时空变异性,而可用于监测的网络往往密度低。萨赫勒地区的情况尤其如此,该地区面积300万平方公里,人口的生活仍然严重依赖降雨进行农业生产。无论使用何种数据和传感器(包括卫星红外和微波数据,可能还有气象雷达系统)来估计降雨量,都有必要定义客观误差函数,以便用于比较各种降雨产品。这是两篇论文中的第一篇,提出了一个理论框架,用于开发这种误差函数并优化其参数用于萨赫勒。使用覆盖两个不同空间尺度的两个数据集,考虑了从降雨事件到年度的一系列时间尺度。中尺度[EPSAT卫星估算-尼日尔(E-N)]记录了13年(1990-2002)期间在30个记录雨量计覆盖的16000平方公里区域上的数据;区域尺度由中心区域农业气象-水文-气象(AGRHYMET) (CRA)数据集记录,年平均值在600 ~ 650个雨量计之间,历时8年。数据分析表明,萨赫勒雨场的空间结构具有明显的各向异性、非平稳性,并以两种基本结构的套套为主。对点降雨值的交叉验证程序导致了最优插值算法的识别。利用该算法在1°× 1°和2.5°× 2.5°单元格上计算的误差方差,推导出误差函数,从而计算出该区域估计的标准误差。对于2.5°× 2.5°(1°× 1°)网格上的10站网,月降雨量估计的典型标准误差为11%(10%),对于2.5°× 2.5°(1°× 1°)网格上的单站网,月降雨量估计的典型标准误差为40%(30%)。在另一篇论文中,这个误差函数被用来研究卫星降雨产品之间的差异,以及它们与地面估计的比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Rainfall Estimation in the Sahel. Part I: Error Function
Rainfall estimation in semiarid regions remains a challenging issue because it displays great spatial and temporal variability and networks available for monitoring are often of low density. This is especially the case in the Sahel, a region of 3 million km2 where the life of populations is still heavily dependent on rain for agriculture. Whatever the data and sensors available for rainfall estimation—including satellite IR and microwave data and possibly weather radar systems—it is necessary to define objective error functions to be used in comparing various rainfall products. This first of two papers presents a theoretical framework for the development of such an error function and the optimization of its parameters for the Sahel. A range of time scales—from rain event to annual—are considered, using two datasets covering two different spatial scales. The mesoscale [Estimation des Pluies par Satellite (EPSAT)-Niger (E-N)] is documented over a period of 13 yr (1990–2002) on an area of 16 000 km2 covered by 30 recording rain gauges; the regional scale is documented by the Centre Regional Agrometeorologie–Hydrologie–Meteorologie (AGRHYMET) (CRA) dataset, with an annual average of between 600 and 650 rain gauges available over a period of 8 yr. The data analysis showed that the spatial structure of the Sahelian rain fields is markedly anisotropic, nonstationary, and dominated by the nesting of two elementary structures. A cross-validation procedure on point rainfall values leads to the identification of an optimal interpolation algorithm. Using the error variances computed from this algorithm on 1° × 1° and 2.5° × 2.5° cells, an error function is derived, allowing the calculation of standard errors of estimation for the region. Typical standard errors for monthly rainfall estimation are 11% (10%) for a 10-station network on a 2.5° × 2.5° (1° × 1°) grid, and 40% (30%) for a single station on a 2.5° × 2.5° (1° × 1°) grid. In a companion paper, this error function is used to investigate the differences between satellite rainfall products and how they compare with ground-based estimates.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Simple Empirical Models for Estimating the Increase in the Central Pressure of Tropical Cyclones after Landfall along the Coastline of the United States A Large-Droplet Mode and Prognostic Number Concentration of Cloud Droplets in the Colorado State University Regional Atmospheric Modeling System (RAMS). Part II: Sensitivity to a Colorado Winter Snowfall Event On the Horizontal Scale of Elevation Dependence of Australian Monthly Precipitation On the Vertical Structure of Modeled and Observed Deep Convective Storms: Insights for Precipitation Retrieval and Microphysical Parameterization A Comparison of the Conservation of Number Concentration for the Continuous Collection and Vapor Diffusion Growth Equations Using One- and Two-Moment Schemes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1