{"title":"用多扇区TESS光度法搜索热木星系统中的行星。1 .在KELT-18、KELT-23、KELT-24、Qatar-8、WASP-62、WASP-100、WASP-119和WASP-126行星系统中没有伴星","authors":"G. Maciejewski","doi":"10.32023/0001-5237/70.3.2","DOIUrl":null,"url":null,"abstract":"Origins of giant planets on tight orbits, so called hot Jupiters, are a long-lasting question in the planetary formation and evolution theory. The answer seems to be hidden in architectures of those systems that remain only partially understood. Using multi-sector time-series photometry from the Transiting Exoplanet Survey Satellite, we searched for additional planets in the KELT-18, KELT-23, KELT-24, Qatar-8, WASP-62, WASP-100, WASP-119, and WASP-126 planetary systems using both the transit technique and transit timing method. Our homogenous analysis has eliminated the presence of transiting companions down to the terrestrial-size regime in the KELT-23 and WASP-62 systems, and down to mini-Neptunes or Neptunes in the remaining ones. Transit timing analysis has revealed no sign of either long-term trends or periodic perturbations for all the studied hot Jupiters, including the WASP-126 b for which deviations from a Keplerian model were claimed in the literature. The loneliness of the planets of the sample speaks in favour of the high-eccentricity migration mechanism that probably brought them to their tight orbits observed nowadays. As a byproduct of our study, the transit light curve parameters were redetermined with a substantial improvement of the precision for 6 systems. For KELT-24 b, a joint analysis allowed us to place a tighter constraint on its orbital eccentricity.","PeriodicalId":8428,"journal":{"name":"arXiv: Earth and Planetary Astrophysics","volume":"119 4 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Search for planets in hot Jupiter systems with multi-sector TESS photometry. I. No companions in planetary systems KELT-18, KELT-23, KELT-24, Qatar-8, WASP-62, WASP-100, WASP-119, and WASP-126\",\"authors\":\"G. Maciejewski\",\"doi\":\"10.32023/0001-5237/70.3.2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Origins of giant planets on tight orbits, so called hot Jupiters, are a long-lasting question in the planetary formation and evolution theory. The answer seems to be hidden in architectures of those systems that remain only partially understood. Using multi-sector time-series photometry from the Transiting Exoplanet Survey Satellite, we searched for additional planets in the KELT-18, KELT-23, KELT-24, Qatar-8, WASP-62, WASP-100, WASP-119, and WASP-126 planetary systems using both the transit technique and transit timing method. Our homogenous analysis has eliminated the presence of transiting companions down to the terrestrial-size regime in the KELT-23 and WASP-62 systems, and down to mini-Neptunes or Neptunes in the remaining ones. Transit timing analysis has revealed no sign of either long-term trends or periodic perturbations for all the studied hot Jupiters, including the WASP-126 b for which deviations from a Keplerian model were claimed in the literature. The loneliness of the planets of the sample speaks in favour of the high-eccentricity migration mechanism that probably brought them to their tight orbits observed nowadays. As a byproduct of our study, the transit light curve parameters were redetermined with a substantial improvement of the precision for 6 systems. For KELT-24 b, a joint analysis allowed us to place a tighter constraint on its orbital eccentricity.\",\"PeriodicalId\":8428,\"journal\":{\"name\":\"arXiv: Earth and Planetary Astrophysics\",\"volume\":\"119 4 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Earth and Planetary Astrophysics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.32023/0001-5237/70.3.2\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Earth and Planetary Astrophysics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.32023/0001-5237/70.3.2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Search for planets in hot Jupiter systems with multi-sector TESS photometry. I. No companions in planetary systems KELT-18, KELT-23, KELT-24, Qatar-8, WASP-62, WASP-100, WASP-119, and WASP-126
Origins of giant planets on tight orbits, so called hot Jupiters, are a long-lasting question in the planetary formation and evolution theory. The answer seems to be hidden in architectures of those systems that remain only partially understood. Using multi-sector time-series photometry from the Transiting Exoplanet Survey Satellite, we searched for additional planets in the KELT-18, KELT-23, KELT-24, Qatar-8, WASP-62, WASP-100, WASP-119, and WASP-126 planetary systems using both the transit technique and transit timing method. Our homogenous analysis has eliminated the presence of transiting companions down to the terrestrial-size regime in the KELT-23 and WASP-62 systems, and down to mini-Neptunes or Neptunes in the remaining ones. Transit timing analysis has revealed no sign of either long-term trends or periodic perturbations for all the studied hot Jupiters, including the WASP-126 b for which deviations from a Keplerian model were claimed in the literature. The loneliness of the planets of the sample speaks in favour of the high-eccentricity migration mechanism that probably brought them to their tight orbits observed nowadays. As a byproduct of our study, the transit light curve parameters were redetermined with a substantial improvement of the precision for 6 systems. For KELT-24 b, a joint analysis allowed us to place a tighter constraint on its orbital eccentricity.