基于深度学习的淋巴结组织病理学图像中的黑色素瘤细胞检测

Salah Alheejawi, R. Berendt, N. Jha, M. Mandal
{"title":"基于深度学习的淋巴结组织病理学图像中的黑色素瘤细胞检测","authors":"Salah Alheejawi, R. Berendt, N. Jha, M. Mandal","doi":"10.5121/sipij.2020.11401","DOIUrl":null,"url":null,"abstract":"Histopathological images are widely used to diagnose diseases including skin cancer. As digital histopathological images are typically of very large size, in the order of several billion pixels, automated identification of all abnormal cell nuclei and their distribution within multiple tissue sections would assist rapid comprehensive diagnostic assessment. In this paper, we propose a technique, using deep learning algorithms, to segment the cell nuclei in Hematoxylin and Eosin (H&E) stained images and detect the abnormal melanocytes within histopathological images. The Nuclear segmentation is done by using a Convolutional Neural Network (CNN) and hand-crafted features are extracted for each nucleus. The segmented nuclei are then classified into normal and abnormal nuclei using a Support Vector Machine classifier. Experimental results show that the CNN can segment the nuclei with more than 90% accuracy. The proposed technique has a low computational complexity.","PeriodicalId":90726,"journal":{"name":"Signal and image processing : an international journal","volume":"1 1","pages":"1-11"},"PeriodicalIF":0.0000,"publicationDate":"2020-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Melanoma Cell Detection in Lymph Nodes Histopathological Images using Deep Learning\",\"authors\":\"Salah Alheejawi, R. Berendt, N. Jha, M. Mandal\",\"doi\":\"10.5121/sipij.2020.11401\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Histopathological images are widely used to diagnose diseases including skin cancer. As digital histopathological images are typically of very large size, in the order of several billion pixels, automated identification of all abnormal cell nuclei and their distribution within multiple tissue sections would assist rapid comprehensive diagnostic assessment. In this paper, we propose a technique, using deep learning algorithms, to segment the cell nuclei in Hematoxylin and Eosin (H&E) stained images and detect the abnormal melanocytes within histopathological images. The Nuclear segmentation is done by using a Convolutional Neural Network (CNN) and hand-crafted features are extracted for each nucleus. The segmented nuclei are then classified into normal and abnormal nuclei using a Support Vector Machine classifier. Experimental results show that the CNN can segment the nuclei with more than 90% accuracy. The proposed technique has a low computational complexity.\",\"PeriodicalId\":90726,\"journal\":{\"name\":\"Signal and image processing : an international journal\",\"volume\":\"1 1\",\"pages\":\"1-11\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-08-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Signal and image processing : an international journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5121/sipij.2020.11401\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Signal and image processing : an international journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5121/sipij.2020.11401","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

组织病理学图像被广泛用于诊断包括皮肤癌在内的疾病。由于数字组织病理学图像通常非常大,大约有几十亿像素,因此自动识别所有异常细胞核及其在多个组织切片中的分布将有助于快速全面的诊断评估。在本文中,我们提出了一种使用深度学习算法分割苏木精和伊红(H&E)染色图像中的细胞核并检测组织病理学图像中的异常黑素细胞的技术。核分割通过使用卷积神经网络(CNN)完成,并为每个核提取手工制作的特征。然后使用支持向量机分类器将分割的核分为正常核和异常核。实验结果表明,该方法能以90%以上的准确率分割核。该方法具有较低的计算复杂度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Melanoma Cell Detection in Lymph Nodes Histopathological Images using Deep Learning
Histopathological images are widely used to diagnose diseases including skin cancer. As digital histopathological images are typically of very large size, in the order of several billion pixels, automated identification of all abnormal cell nuclei and their distribution within multiple tissue sections would assist rapid comprehensive diagnostic assessment. In this paper, we propose a technique, using deep learning algorithms, to segment the cell nuclei in Hematoxylin and Eosin (H&E) stained images and detect the abnormal melanocytes within histopathological images. The Nuclear segmentation is done by using a Convolutional Neural Network (CNN) and hand-crafted features are extracted for each nucleus. The segmented nuclei are then classified into normal and abnormal nuclei using a Support Vector Machine classifier. Experimental results show that the CNN can segment the nuclei with more than 90% accuracy. The proposed technique has a low computational complexity.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Omni-Modeler: Rapid Adaptive Visual Recognition with Dynamic Learning A Comparative Study of Machine Learning Algorithms for EEG Signal Classification Combining of Narrative News and VR Games: Comparison of Various Forms of News Games Mixed Spectra for Stable Signals from Discrete Observations Fractional Order Butterworth Filter for Fetal Electrocardiographic Signal Feature Extraction
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1