以1-甲基-3-(2-氧乙基)- 1h -咪唑-3-硼酸盐磺酸为可回收高效离子液体催化剂,在绿色条件下快速一锅合成2-芳基取代苯并咪唑衍生物

S. Sajjadifar, I. Amini, H. Jabbari, Omidali Pouralimardan, M. Fekri, K. Pal
{"title":"以1-甲基-3-(2-氧乙基)- 1h -咪唑-3-硼酸盐磺酸为可回收高效离子液体催化剂,在绿色条件下快速一锅合成2-芳基取代苯并咪唑衍生物","authors":"S. Sajjadifar, I. Amini, H. Jabbari, Omidali Pouralimardan, M. Fekri, K. Pal","doi":"10.33945/sami/ecc.2019.2.7","DOIUrl":null,"url":null,"abstract":"1-Methyl-3-(2-oxyethyl)-1H-Imidazol-3-ium-Borate Sulfonic Acid ([MOEI]-BSA) was easily prepared and used as a new and highly efficient solid acid catalyst for the synthesis of benzimidazole derivatives with high isolated yields. Various substituted benzimidazoles were synthesized by a combination of o-phenylenediamines and aldehydes in the presence of [MOEI]-BSA with excellent yields in water and under a mild and green reaction conditions. This method is also applicable for precursors such as aromatic and unsaturated aldehydes and o-phenylenediamines. Addition of organic part to BSA and synthesis of [MOEI]-BSA as a new Bronsted acidic ionic liquid (BAIL) improved the efficiency of this catalyst. 1-Methyl-3-(2-oxyethyl)-1H-Imidazol-3-ium-Borate Sulfonic Acid ([MOEI]-BSA) was easily prepared and used as a new and highly efficient solid acid catalyst for the synthesis of benzimidazole derivatives with high isolated yields. Various substituted benzimidazoles were synthesized by a combination of o-phenylenediamines and aldehydes in the presence of [MOEI]-BSA with excellent yields in water and under a mild and green reaction conditions. This method is also applicable for precursors such as aromatic and unsaturated aldehydes and o-phenylenediamines. Addition of organic part to BSA and synthesis of [MOEI]-BSA as a new Bronsted acidic ionic liquid (BAIL) improved the efficiency of this catalyst.","PeriodicalId":11871,"journal":{"name":"Eurasian Chemical Communications","volume":"15 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"An efficient facile and one-pot synthesis of 2-arylsubstituted benzimidazole derivatives using 1-methyl-3-(2-oxyethyl)-1H-imidazol-3-ium-borate sulfonic acid as a recyclable and highly efficient ionic liquid catalyst at green condition\",\"authors\":\"S. Sajjadifar, I. Amini, H. Jabbari, Omidali Pouralimardan, M. Fekri, K. Pal\",\"doi\":\"10.33945/sami/ecc.2019.2.7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"1-Methyl-3-(2-oxyethyl)-1H-Imidazol-3-ium-Borate Sulfonic Acid ([MOEI]-BSA) was easily prepared and used as a new and highly efficient solid acid catalyst for the synthesis of benzimidazole derivatives with high isolated yields. Various substituted benzimidazoles were synthesized by a combination of o-phenylenediamines and aldehydes in the presence of [MOEI]-BSA with excellent yields in water and under a mild and green reaction conditions. This method is also applicable for precursors such as aromatic and unsaturated aldehydes and o-phenylenediamines. Addition of organic part to BSA and synthesis of [MOEI]-BSA as a new Bronsted acidic ionic liquid (BAIL) improved the efficiency of this catalyst. 1-Methyl-3-(2-oxyethyl)-1H-Imidazol-3-ium-Borate Sulfonic Acid ([MOEI]-BSA) was easily prepared and used as a new and highly efficient solid acid catalyst for the synthesis of benzimidazole derivatives with high isolated yields. Various substituted benzimidazoles were synthesized by a combination of o-phenylenediamines and aldehydes in the presence of [MOEI]-BSA with excellent yields in water and under a mild and green reaction conditions. This method is also applicable for precursors such as aromatic and unsaturated aldehydes and o-phenylenediamines. Addition of organic part to BSA and synthesis of [MOEI]-BSA as a new Bronsted acidic ionic liquid (BAIL) improved the efficiency of this catalyst.\",\"PeriodicalId\":11871,\"journal\":{\"name\":\"Eurasian Chemical Communications\",\"volume\":\"15 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Eurasian Chemical Communications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.33945/sami/ecc.2019.2.7\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Chemistry\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Eurasian Chemical Communications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.33945/sami/ecc.2019.2.7","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Chemistry","Score":null,"Total":0}
引用次数: 3

摘要

1-甲基-3-(2-氧乙基)- 1h -咪唑-3-硼酸盐磺酸([MOEI]- bsa)是一种新型高效的固体酸催化剂,可用于合成苯并咪唑衍生物,分离收率高。以邻苯二胺和醛为原料,在[MOEI]-BSA存在下合成了多种取代苯并咪唑,反应条件温和环保,产率高。该方法也适用于芳香和不饱和醛、邻苯二胺等前体。在BSA中加入有机组分,合成[MOEI]-BSA作为新型Bronsted酸性离子液体(BAIL),提高了该催化剂的效率。1-甲基-3-(2-氧乙基)- 1h -咪唑-3-硼酸盐磺酸([MOEI]- bsa)是一种新型高效的固体酸催化剂,可用于合成苯并咪唑衍生物,分离收率高。以邻苯二胺和醛为原料,在[MOEI]-BSA存在下合成了多种取代苯并咪唑,反应条件温和环保,产率高。该方法也适用于芳香和不饱和醛、邻苯二胺等前体。在BSA中加入有机组分,合成[MOEI]-BSA作为新型Bronsted酸性离子液体(BAIL),提高了该催化剂的效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
An efficient facile and one-pot synthesis of 2-arylsubstituted benzimidazole derivatives using 1-methyl-3-(2-oxyethyl)-1H-imidazol-3-ium-borate sulfonic acid as a recyclable and highly efficient ionic liquid catalyst at green condition
1-Methyl-3-(2-oxyethyl)-1H-Imidazol-3-ium-Borate Sulfonic Acid ([MOEI]-BSA) was easily prepared and used as a new and highly efficient solid acid catalyst for the synthesis of benzimidazole derivatives with high isolated yields. Various substituted benzimidazoles were synthesized by a combination of o-phenylenediamines and aldehydes in the presence of [MOEI]-BSA with excellent yields in water and under a mild and green reaction conditions. This method is also applicable for precursors such as aromatic and unsaturated aldehydes and o-phenylenediamines. Addition of organic part to BSA and synthesis of [MOEI]-BSA as a new Bronsted acidic ionic liquid (BAIL) improved the efficiency of this catalyst. 1-Methyl-3-(2-oxyethyl)-1H-Imidazol-3-ium-Borate Sulfonic Acid ([MOEI]-BSA) was easily prepared and used as a new and highly efficient solid acid catalyst for the synthesis of benzimidazole derivatives with high isolated yields. Various substituted benzimidazoles were synthesized by a combination of o-phenylenediamines and aldehydes in the presence of [MOEI]-BSA with excellent yields in water and under a mild and green reaction conditions. This method is also applicable for precursors such as aromatic and unsaturated aldehydes and o-phenylenediamines. Addition of organic part to BSA and synthesis of [MOEI]-BSA as a new Bronsted acidic ionic liquid (BAIL) improved the efficiency of this catalyst.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Eurasian Chemical Communications
Eurasian Chemical Communications CHEMISTRY, MULTIDISCIPLINARY-
CiteScore
3.00
自引率
0.00%
发文量
0
期刊最新文献
Post corona: Chemicals, environmental factors, and public health The dual role of ammonium acetate as reagent and catalyst in the synthesis of 2, 4, 5-triaryl-1H-imidazoles Modified nano-γ-alumina with 2, 4-‌dinitrophenyl hydrazine as an efficient adsorbent for the removal of everzol red 3BS dye from aqueous solutions Catalytic evaluation of newly prepared GO-SB-H2PMo as an efficient and reusable nanocatalyst for the neat synthesis of amidoalkyl naphthols Hyaluronic acid hydrogel nanoscaffolds: production and assessment of the physicochemical properties
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1