远程机器人的虚拟现实校准和预览/预测显示

IF 0.7 4区 计算机科学 Q4 COMPUTER SCIENCE, CYBERNETICS Presence-Teleoperators and Virtual Environments Pub Date : 1996-01-01 DOI:10.1162/pres.1996.5.2.173
W. Kim
{"title":"远程机器人的虚拟现实校准和预览/预测显示","authors":"W. Kim","doi":"10.1162/pres.1996.5.2.173","DOIUrl":null,"url":null,"abstract":"A virtual reality (VR) calibration technique of matching a virtual environment of simulated three-dimensional (3-D) graphic models with actual camera views of the remote site task environment has been developed. This VR calibration enables high-fidelity preview/predictive displays with calibrated graphics overlay on live video. Reliable and accurate calibration is achieved by operator-interactive camera calibration and object localization procedures based on new linear/nonlinear least-squares algorithms that can handle multiple-camera views. Since the object pose becomes known through the VR calibration, the operator can now effectively use the semiautomatic computer-generated trajectory mode in addition to the manual teleoperation mode. The developed VR calibration technique and the resultant high fidelity preview/predictive displays were successfully utilized in a recent JPL/NASA-GSFC (Jet Propulsion Laboratory/Goddard Space Flight Center) telerobotic servicing demonstration. Preview/predictive displays were very useful for both noncontact and contact tasks, providing an effective VR interface with immediate visual prediction/verification to the operator. The positioning alignment accuracy achieved using four-camera views in inserting a tool into the ORU hole was 0.51 cm on the average with a 1.07 cm maximum error at 95% confidence level. Results also indicate that the object localization with two well-chosen, e.g., near orthogonal camera views, could be nearly as accurate as that with four-camera views.","PeriodicalId":54588,"journal":{"name":"Presence-Teleoperators and Virtual Environments","volume":null,"pages":null},"PeriodicalIF":0.7000,"publicationDate":"1996-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"58","resultStr":"{\"title\":\"Virtual Reality Calibration and Preview/Predictive Displays for Telerobotics\",\"authors\":\"W. Kim\",\"doi\":\"10.1162/pres.1996.5.2.173\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A virtual reality (VR) calibration technique of matching a virtual environment of simulated three-dimensional (3-D) graphic models with actual camera views of the remote site task environment has been developed. This VR calibration enables high-fidelity preview/predictive displays with calibrated graphics overlay on live video. Reliable and accurate calibration is achieved by operator-interactive camera calibration and object localization procedures based on new linear/nonlinear least-squares algorithms that can handle multiple-camera views. Since the object pose becomes known through the VR calibration, the operator can now effectively use the semiautomatic computer-generated trajectory mode in addition to the manual teleoperation mode. The developed VR calibration technique and the resultant high fidelity preview/predictive displays were successfully utilized in a recent JPL/NASA-GSFC (Jet Propulsion Laboratory/Goddard Space Flight Center) telerobotic servicing demonstration. Preview/predictive displays were very useful for both noncontact and contact tasks, providing an effective VR interface with immediate visual prediction/verification to the operator. The positioning alignment accuracy achieved using four-camera views in inserting a tool into the ORU hole was 0.51 cm on the average with a 1.07 cm maximum error at 95% confidence level. Results also indicate that the object localization with two well-chosen, e.g., near orthogonal camera views, could be nearly as accurate as that with four-camera views.\",\"PeriodicalId\":54588,\"journal\":{\"name\":\"Presence-Teleoperators and Virtual Environments\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.7000,\"publicationDate\":\"1996-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"58\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Presence-Teleoperators and Virtual Environments\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1162/pres.1996.5.2.173\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, CYBERNETICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Presence-Teleoperators and Virtual Environments","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1162/pres.1996.5.2.173","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, CYBERNETICS","Score":null,"Total":0}
引用次数: 58

摘要

提出了一种将模拟三维图形模型的虚拟环境与远程现场任务环境的实际摄像机视图相匹配的虚拟现实(VR)校准技术。这种VR校准使高保真预览/预测显示与校准的图形覆盖在现场视频。通过基于新的线性/非线性最小二乘算法的操作交互相机校准和目标定位程序,可以处理多相机视图,从而实现可靠和准确的校准。由于通过VR校准可以知道物体的姿态,操作员现在可以有效地使用半自动计算机生成的轨迹模式,除了手动远程操作模式。开发的VR校准技术和由此产生的高保真预览/预测显示在最近的JPL/NASA-GSFC(喷气推进实验室/戈达德太空飞行中心)远程机器人服务演示中成功应用。预览/预测显示对于非接触式和接触式任务都非常有用,为操作员提供了一个有效的VR界面,可以立即进行视觉预测/验证。使用四摄像头视图将工具插入ORU孔时,定位对准精度平均为0.51 cm, 95%置信水平下最大误差为1.07 cm。结果还表明,两个精心选择的目标定位,例如,近正交的相机视图,可以几乎与四个相机视图一样准确。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Virtual Reality Calibration and Preview/Predictive Displays for Telerobotics
A virtual reality (VR) calibration technique of matching a virtual environment of simulated three-dimensional (3-D) graphic models with actual camera views of the remote site task environment has been developed. This VR calibration enables high-fidelity preview/predictive displays with calibrated graphics overlay on live video. Reliable and accurate calibration is achieved by operator-interactive camera calibration and object localization procedures based on new linear/nonlinear least-squares algorithms that can handle multiple-camera views. Since the object pose becomes known through the VR calibration, the operator can now effectively use the semiautomatic computer-generated trajectory mode in addition to the manual teleoperation mode. The developed VR calibration technique and the resultant high fidelity preview/predictive displays were successfully utilized in a recent JPL/NASA-GSFC (Jet Propulsion Laboratory/Goddard Space Flight Center) telerobotic servicing demonstration. Preview/predictive displays were very useful for both noncontact and contact tasks, providing an effective VR interface with immediate visual prediction/verification to the operator. The positioning alignment accuracy achieved using four-camera views in inserting a tool into the ORU hole was 0.51 cm on the average with a 1.07 cm maximum error at 95% confidence level. Results also indicate that the object localization with two well-chosen, e.g., near orthogonal camera views, could be nearly as accurate as that with four-camera views.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.20
自引率
0.00%
发文量
8
审稿时长
>12 weeks
期刊最新文献
Correlates of Presence in a Virtual Reality Gamification Environment for Rehabilitation after Musculoskeletal Injury Intrinsically Secure Information Barrier for Arms Control Verification. Sandia National Labs Scaled Wind Farm Technology (SWiFT) Facility - Navigating Safely into the 2020s. HydroGEN: Solar Thermochemical Hydrogen (STCH) Water Splitting. Determining Hazard Severity via Probabilistic Risk Assessment in the Commercial Trucking Industry to Inform Design and Qualification.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1